Auer, Peter, Harald Burgsteiner, and Wolfgang Maass. 2008.
βA Learning Rule for Very Simple Universal Approximators Consisting of a Single Layer of Perceptrons.β Neural Networks 21 (5): 786β95.
Baldi, Pierre, Peter Sadowski, and Zhiqin Lu. 2016.
βLearning in the Machine: Random Backpropagation and the Learning Channel.β arXiv:1612.02734 [Cs], December.
Cao, Feilong, Dianhui Wang, Houying Zhu, and Yuguang Wang. 2016.
βAn Iterative Learning Algorithm for Feedforward Neural Networks with Random Weights.β Information Sciences 328: 546β57.
Charles, Adam, Dong Yin, and Christopher Rozell. 2016.
βDistributed Sequence Memory of Multidimensional Inputs in Recurrent Networks.β arXiv:1605.08346 [Cs, Math, Stat], May.
Gauthier, Daniel J., Erik Bollt, Aaron Griffith, and Wendson A. S. Barbosa. 2021.
βNext Generation Reservoir Computing.β Nature Communications 12 (1): 5564.
Giryes, R., G. Sapiro, and A. M. Bronstein. 2016.
βDeep Neural Networks with Random Gaussian Weights: A Universal Classification Strategy?β IEEE Transactions on Signal Processing 64 (13): 3444β57.
Globerson, Amir, and Roi Livni. 2016.
βLearning Infinite-Layer Networks: Beyond the Kernel Trick.β arXiv:1606.05316 [Cs], June.
Goudarzi, Alireza, Peter Banda, Matthew R. Lakin, Christof Teuscher, and Darko Stefanovic. 2014.
βA Comparative Study of Reservoir Computing for Temporal Signal Processing.β arXiv:1401.2224 [Cs], January.
Goudarzi, Alireza, and Christof Teuscher. 2016.
βReservoir Computing: Quo Vadis?β In
Proceedings of the 3rd ACM International Conference on Nanoscale Computing and Communication, 13:1β6. NANOCOMβ16. New York, NY, USA: ACM.
Grzyb, B. J., E. Chinellato, G. M. Wojcik, and W. A. Kaminski. 2009.
βWhich Model to Use for the Liquid State Machine?β In
2009 International Joint Conference on Neural Networks, 1018β24.
Hazan, Hananel, and Larry M. Manevitz. 2012.
βTopological Constraints and Robustness in Liquid State Machines.β Expert Systems with Applications 39 (2): 1597β1606.
He, Kun, Yan Wang, and John Hopcroft. 2016.
βA Powerful Generative Model Using Random Weights for the Deep Image Representation.β In
Advances in Neural Information Processing Systems.
Huang, Guang-Bin, and Chee-Kheong Siew. 2005.
βExtreme Learning Machine with Randomly Assigned RBF Kernels.β International Journal of Information Technology 11 (1): 16β24.
Huang, Guang-Bin, Qin-Yu Zhu, and Chee-Kheong Siew. 2004.
βExtreme Learning Machine: A New Learning Scheme of Feedforward Neural Networks.β In
2004 IEEE International Joint Conference on Neural Networks, 2004. Proceedings, 2:985β990 vol.2.
βββ. 2006.
βExtreme Learning Machine: Theory and Applications.β Neurocomputing, Neural Networks Selected Papers from the 7th Brazilian Symposium on Neural Networks (SBRN β04) 7th Brazilian Symposium on Neural Networks, 70 (1β3): 489β501.
LukoΕ‘eviΔius, Mantas, and Herbert Jaeger. 2009.
βReservoir Computing Approaches to Recurrent Neural Network Training.β Computer Science Review 3 (3): 127β49.
Maass, W., T. NatschlΓ€ger, and H. Markram. 2004.
βComputational Models for Generic Cortical Microcircuits.β In
Computational Neuroscience: A Comprehensive Approach, 575β605. Chapman & Hall/CRC.
Oyallon, Edouard, Eugene Belilovsky, and Sergey Zagoruyko. 2017.
βScaling the Scattering Transform: Deep Hybrid Networks.β arXiv Preprint arXiv:1703.08961.
Pathak, Jaideep, Brian Hunt, Michelle Girvan, Zhixin Lu, and Edward Ott. 2018.
βModel-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach.β Physical Review Letters 120 (2): 024102.
Pathak, Jaideep, Zhixin Lu, Brian R. Hunt, Michelle Girvan, and Edward Ott. 2017.
βUsing Machine Learning to Replicate Chaotic Attractors and Calculate Lyapunov Exponents from Data.β Chaos: An Interdisciplinary Journal of Nonlinear Science 27 (12): 121102.
Rahimi, Ali, and Benjamin Recht. 2009.
βWeighted Sums of Random Kitchen Sinks: Replacing Minimization with Randomization in Learning.β In
Advances in Neural Information Processing Systems, 1313β20. Curran Associates, Inc.
Scardapane, Simone, and Dianhui Wang. 2017.
βRandomness in Neural Networks: An Overview.β Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 7 (2).
Steil, J. J. 2004.
βBackpropagation-Decorrelation: Online Recurrent Learning with O(N) Complexity.β In
2004 IEEE International Joint Conference on Neural Networks, 2004. Proceedings, 2:843β848 vol.2.
Taylor, Graham W., Geoffrey E. Hinton, and Sam T. Roweis. 2006.
βModeling Human Motion Using Binary Latent Variables.β In
Advances in Neural Information Processing Systems, 1345β52.
Tong, Matthew H., Adam D. Bickett, Eric M. Christiansen, and Garrison W. Cottrell. 2007.
βLearning Grammatical Structure with Echo State Networks.β Neural Networks 20 (3): 424β32.
Triefenbach, F., A. Jalalvand, K. Demuynck, and J. P. Martens. 2013.
βAcoustic Modeling With Hierarchical Reservoirs.β IEEE Transactions on Audio, Speech, and Language Processing 21 (11): 2439β50.
Zhang, Le, and P. N. Suganthan. 2016.
βA Survey of Randomized Algorithms for Training Neural Networks.β Information Sciences 364β365 (C): 146β55.
No comments yet. Why not leave one?