Blumensath, Thomas, and Mike Davies. 2004.
βOn Shift-Invariant Sparse Coding.β In
Independent Component Analysis and Blind Signal Separation, edited by Carlos G. Puntonet and Alberto Prieto, 3195:1205β12. Berlin, Heidelberg: Springer Berlin Heidelberg.
Charles, Adam, Aurele Balavoine, and Christopher Rozell. 2016.
βDynamic Filtering of Time-Varying Sparse Signals via L1 Minimization.β IEEE Transactions on Signal Processing 64 (21): 5644β56.
Garg, Sahil, Irina Rish, Guillermo Cecchi, and Aurelie Lozano. 2017.
βNeurogenesis-Inspired Dictionary Learning: Online Model Adaption in a Changing World.β In
arXiv:1701.06106 [Cs, Stat].
Gehler, Peter Vincent, and Sebastian Nowozin. n.d. βLet the Kernel Figure It Out; Principled Learning of Pre-Processing for Kernel Classiο¬ers.β
Gregor, Karol, and Yann LeCun. 2010.
βLearning fast approximations of sparse coding.β In
Proceedings of the 27th International Conference on Machine Learning (ICML-10), 399β406.
Grosse, Roger, Rajat Raina, Helen Kwong, and Andrew Y. Ng. 2007.
βShift-Invariant Sparse Coding for Audio Classification.β In
The Twenty-Third Conference on Uncertainty in Artificial Intelligence (UAI2007), 9:8.
Hahn, William Edward, Stephanie Lewkowitz, Daniel C. Lacombe, and Elan Barenholtz. 2015.
βDeep Learning Human Actions from Video via Sparse Filtering and Locally Competitive Algorithms.β Multimedia Tools and Applications 74 (22): 10097β110.
Henaff, Mikael, Kevin Jarrett, Koray Kavukcuoglu, and Yann LeCun. 2011.
βUnsupervised Learning of Sparse Features for Scalable Audio Classification.β In
ISMIR.
HyvΓ€rinen, Aapo, Jarmo Hurri, and Patrick O. Hoyer. 2009.
Natural Image Statistics: A Probabilistic Approach to Early Computational Vision. Vol. 39. Springer Science & Business Media.
Knudson, Karin C, Jacob Yates, Alexander Huk, and Jonathan W Pillow. 2014.
βInferring Sparse Representations of Continuous Signals with Continuous Orthogonal Matching Pursuit.β In
Advances in Neural Information Processing Systems 27, edited by Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, 27:1215β23. Curran Associates, Inc.
Kreutz-Delgado, Kenneth, Joseph F. Murray, Bhaskar D. Rao, Kjersti Engan, Te-Won Lee, and Terrence J. Sejnowski. 2003.
βDictionary Learning Algorithms for Sparse Representation.β Neural Computation 15 (2): 349β96.
Lattner, Stefan, Monika Dorο¬er, and Andreas Arzt. 2019.
βLearning Complex Basis Functions for Invariant Representations of Audio.β In
Proceedings of the 20th Conference of the International Society for Music Information Retrieval, 8.
Lewicki, M S, and T J Sejnowski. 1999.
βCoding Time-Varying Signals Using Sparse, Shift-Invariant Representations.β In
NIPS, 11:730β36. Denver, CO: MIT Press.
Lewicki, Michael S., and Terrence J. Sejnowski. 2000.
βLearning Overcomplete Representations.β Neural Computation 12 (2): 337β65.
Mairal, Julien, Francis Bach, and Jean Ponce. 2014.
Sparse Modeling for Image and Vision Processing. Vol. 8.
Mairal, Julien, Francis Bach, Jean Ponce, and Guillermo Sapiro. 2009.
βOnline Dictionary Learning for Sparse Coding.β In
Proceedings of the 26th Annual International Conference on Machine Learning, 689β96. ICML β09. New York, NY, USA: ACM.
βββ. 2010.
βOnline Learning for Matrix Factorization and Sparse Coding.β The Journal of Machine Learning Research 11: 19β60.
Meinshausen, Nicolai, and Bin Yu. 2009.
βLasso-Type Recovery of Sparse Representations for High-Dimensional Data.β The Annals of Statistics 37 (1): 246β70.
Ngiam, Jiquan, Zhenghao Chen, Sonia A. Bhaskar, Pang W. Koh, and Andrew Y. Ng. 2011.
βSparse Filtering.β In
Advances in Neural Information Processing Systems 24, edited by J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, 1125β33. Curran Associates, Inc.
Olshausen, B. A., and D. J. Field. 1996.
βNatural image statistics and efficient coding.β Network (Bristol, England) 7 (2): 333β39.
Olshausen, Bruno A, and David J Field. 2004.
βSparse Coding of Sensory Inputs.β Current Opinion in Neurobiology 14 (4): 481β87.
Qian, Wei, Bin Hong, Deng Cai, Xiaofei He, and Xuelong Li. 2016.
βNon-Negative Matrix Factorization with Sinkhorn Distance.β In
Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, 1960β66. IJCAIβ16. New York, New York, USA: AAAI Press.
Rubinstein, Ron, A.M. Bruckstein, and Michael Elad. 2010.
βDictionaries for Sparse Representation Modeling.β Proceedings of the IEEE 98 (6): 1045β57.
Scetbon, Meyer, Marco Cuturi, and Gabriel PeyrΓ©. 2021.
βLow-Rank Sinkhorn Factorization.β In
Proceedings of the 38th International Conference on Machine Learning, 9344β54. PMLR.
Schmitz, Morgan A., Matthieu Heitz, Nicolas Bonneel, Fred Ngolè, David Coeurjolly, Marco Cuturi, Gabriel Peyré, and Jean-Luc Starck. 2018.
βWasserstein Dictionary Learning: Optimal Transport-Based Unsupervised Nonlinear Dictionary Learning.β SIAM Journal on Imaging Sciences 11 (1): 643β78.
Shen, Chunhua, and Hanxi Li. 2010.
βOn the Dual Formulation of Boosting Algorithms.β IEEE Transactions on Pattern Analysis and Machine Intelligence 32 (12): 2216β31.
Simoncelli, Eero P, and Bruno A Olshausen. 2001.
βNatural Image Statistics and Neural Representation.β Annual Review of Neuroscience 24 (1): 1193β1216.
Soh, Yong Sheng, and Venkat Chandrasekaran. 2017.
βA Matrix Factorization Approach for Learning Semidefinite-Representable Regularizers.β arXiv:1701.01207 [Cs, Math, Stat], January.
Yaghoobi, M., Sangnam Nam, R. Gribonval, and M.E. Davies. 2013.
βConstrained Overcomplete Analysis Operator Learning for Cosparse Signal Modelling.β IEEE Transactions on Signal Processing 61 (9): 2341β55.
No comments yet. Why not leave one?