Junction for various bayesian methods where the estimands are functions over some sintunuous argument space.
Gaussian process regression
On manifolds
I would like to read Terenin on GPs on Manifolds who also makes a suggestive connection to SDEs, which is the filtering GPs trick again.
By variational inference
π
Neural processes
See neural processes.
Non-Gaussian
Generic nonparametrics
See Bayes nonparametrics.
References
Alexanderian, Alen. 2021. βOptimal Experimental Design for Infinite-Dimensional Bayesian Inverse Problems Governed by PDEs: A Review.β arXiv:2005.12998 [Math], January.
Bostan, E., U. S. Kamilov, M. Nilchian, and M. Unser. 2013. βSparse Stochastic Processes and Discretization of Linear Inverse Problems.β IEEE Transactions on Image Processing 22 (7): 2699β2710.
Bui-Thanh, Tan, Omar Ghattas, James Martin, and Georg Stadler. 2013. βA Computational Framework for Infinite-Dimensional Bayesian Inverse Problems Part I: The Linearized Case, with Application to Global Seismic Inversion.β SIAM Journal on Scientific Computing 35 (6): A2494β2523.
Dashti, Masoumeh, Stephen Harris, and Andrew Stuart. 2011. βBesov Priors for Bayesian Inverse Problems.β arXiv.
Dashti, Masoumeh, and Andrew M. Stuart. 2015. βThe Bayesian Approach To Inverse Problems.β arXiv:1302.6989 [Math], July.
Dubrule, Olivier. 2018. βKriging, Splines, Conditional Simulation, Bayesian Inversion and Ensemble Kalman Filtering.β In Handbook of Mathematical Geosciences: Fifty Years of IAMG, edited by B.S. Daya Sagar, Qiuming Cheng, and Frits Agterberg, 3β24. Cham: Springer International Publishing.
Grigorievskiy, Alexander, Neil Lawrence, and Simo SΓ€rkkΓ€. 2017. βParallelizable Sparse Inverse Formulation Gaussian Processes (SpInGP).β In arXiv:1610.08035 [Stat].
Jo, Hyeontae, Hwijae Son, Hyung Ju Hwang, and Eun Heui Kim. 2020. βDeep Neural Network Approach to Forward-Inverse Problems.β Networks & Heterogeneous Media 15 (2): 247.
Knapik, B. T., A. W. van der Vaart, and J. H. van Zanten. 2011. βBayesian Inverse Problems with Gaussian Priors.β The Annals of Statistics 39 (5).
Lasanen, S, and L Roininen. 2005. βStatistical Inversion with Greenβs Priors.β In Proceedings of the 5th International Conference on Inverse Problems in Engineering: Theory and Practice, Cambridge, UK, 11.
Lassas, Matti, and Samuli Siltanen. 2004. βCan One Use Total Variation Prior for Edge-Preserving Bayesian Inversion?β Inverse Problems 20 (5): 1537β63.
Lee, Kuang-Yao, Dingjue Ji, Lexin Li, Todd Constable, and Hongyu Zhao. 2023. βConditional Functional Graphical Models.β Journal of the American Statistical Association 118 (541): 257β71.
Liu, Xiao, Kyongmin Yeo, and Siyuan Lu. 2020. βStatistical Modeling for Spatio-Temporal Data From Stochastic Convection-Diffusion Processes.β Journal of the American Statistical Association 0 (0): 1β18.
Louizos, Christos, Xiahan Shi, Klamer Schutte, and Max Welling. 2019. βThe Functional Neural Process.β In Advances in Neural Information Processing Systems. Vol. 32. Curran Associates, Inc.
Magnani, Emilia, Nicholas KrΓ€mer, Runa Eschenhagen, Lorenzo Rosasco, and Philipp Hennig. 2022. βApproximate Bayesian Neural Operators: Uncertainty Quantification for Parametric PDEs.β arXiv.
Mosegaard, Klaus, and Albert Tarantola. 2002. βProbabilistic Approach to Inverse Problems.β In International Geophysics, 81:237β65. Elsevier.
Perdikaris, Paris, and George Em Karniadakis. 2016. βModel inversion via multi-fidelity Bayesian optimization: a new paradigm for parameter estimation in haemodynamics, and beyond.β Journal of the Royal Society, Interface 13 (118): 20151107.
Petra, Noemi, James Martin, Georg Stadler, and Omar Ghattas. 2014. βA Computational Framework for Infinite-Dimensional Bayesian Inverse Problems, Part II: Stochastic Newton MCMC with Application to Ice Sheet Flow Inverse Problems.β SIAM Journal on Scientific Computing 36 (4): A1525β55.
Phillips, Angus, Thomas Seror, Michael John Hutchinson, Valentin De Bortoli, Arnaud Doucet, and Emile Mathieu. 2022. βSpectral Diffusion Processes.β In.
Pielok, Tobias, Bernd Bischl, and David RΓΌgamer. 2023. βApproximate Bayesian Inference with Stein Functional Variational Gradient Descent.β In.
Pikkarainen, Hanna Katriina. 2006. βState Estimation Approach to Nonstationary Inverse Problems: Discretization Error and Filtering Problem.β Inverse Problems 22 (1): 365β79.
Pinski, F. J., G. Simpson, A. M. Stuart, and H. Weber. 2015. βKullback-Leibler Approximation for Probability Measures on Infinite Dimensional Spaces.β SIAM Journal on Mathematical Analysis 47 (6): 4091β4122.
Sigrist, Fabio, Hans R. KΓΌnsch, and Werner A. Stahel. 2015. βSpate : An R Package for Spatio-Temporal Modeling with a Stochastic Advection-Diffusion Process.β Application/pdf. Journal of Statistical Software 63 (14).
Singh, Gautam, Jaesik Yoon, Youngsung Son, and Sungjin Ahn. 2019. βSequential Neural Processes.β arXiv:1906.10264 [Cs, Stat], June.
Song, Yang, Liyue Shen, Lei Xing, and Stefano Ermon. 2022. βSolving Inverse Problems in Medical Imaging with Score-Based Generative Models.β In. arXiv.
Song, Yang, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. 2022. βScore-Based Generative Modeling Through Stochastic Differential Equations.β In.
Sun, Shengyang, Guodong Zhang, Jiaxin Shi, and Roger Grosse. 2019. βFunctional Variational Bayesian Neural Networks.β In.
Tran, Ba-Hien, Simone Rossi, Dimitrios Milios, and Maurizio Filippone. 2022. βAll You Need Is a Good Functional Prior for Bayesian Deep Learning.β Journal of Machine Learning Research 23 (74): 1β56.
Unser, M. 2015. βSampling and (Sparse) Stochastic Processes: A Tale of Splines and Innovation.β In 2015 International Conference on Sampling Theory and Applications (SampTA), 221β25.
Unser, Michael A., and Pouya Tafti. 2014. An Introduction to Sparse Stochastic Processes. New York: Cambridge University Press.
Unser, M., P. D. Tafti, A. Amini, and H. Kirshner. 2014. βA Unified Formulation of Gaussian Vs Sparse Stochastic Processes - Part II: Discrete-Domain Theory.β IEEE Transactions on Information Theory 60 (5): 3036β51.
Unser, M., P. D. Tafti, and Q. Sun. 2014. βA Unified Formulation of Gaussian Vs Sparse Stochastic ProcessesβPart I: Continuous-Domain Theory.β IEEE Transactions on Information Theory 60 (3): 1945β62.
Valentine, Andrew P, and Malcolm Sambridge. 2020a. βGaussian Process ModelsβI. A Framework for Probabilistic Continuous Inverse Theory.β Geophysical Journal International 220 (3): 1632β47.
βββ. 2020b. βGaussian Process ModelsβII. Lessons for Discrete Inversion.β Geophysical Journal International 220 (3): 1648β56.
Wang, Ziyu, Tongzheng Ren, Jun Zhu, and Bo Zhang. 2018. βFunction Space Particle Optimization for Bayesian Neural Networks.β In.
Watson, Joe, Jihao Andreas Lin, Pascal Klink, and Jan Peters. 2020. βNeural Linear Models with Functional Gaussian Process Priors.β In, 10.
Yang, Liu, Xuhui Meng, and George Em Karniadakis. 2021. βB-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data.β Journal of Computational Physics 425 (January): 109913.
Yang, Liu, Dongkun Zhang, and George Em Karniadakis. 2020. βPhysics-Informed Generative Adversarial Networks for Stochastic Differential Equations.β SIAM Journal on Scientific Computing 42 (1): A292β317.
Zammit-Mangion, Andrew, Michael Bertolacci, Jenny Fisher, Ann Stavert, Matthew L. Rigby, Yi Cao, and Noel Cressie. 2021. βWOMBAT v1.0: A fully Bayesian global flux-inversion framework.β Geoscientific Model Development Discussions, July, 1β51.
Zhang, Dongkun, Ling Guo, and George Em Karniadakis. 2020. βLearning in Modal Space: Solving Time-Dependent Stochastic PDEs Using Physics-Informed Neural Networks.β SIAM Journal on Scientific Computing 42 (2): A639β65.
No comments yet. Why not leave one?