Alzraiee, Ayman H., Jeremy T. White, Matthew J. Knowling, Randall J. Hunt, and Michael N. Fienen. 2022.
βA Scalable Model-Independent Iterative Data Assimilation Tool for Sequential and Batch Estimation of High Dimensional Model Parameters and States.β Environmental Modelling & Software 150 (April): 105284.
Anderson, Brian D. O. 1982.
βReverse-Time Diffusion Equation Models.β Stochastic Processes and Their Applications 12 (3): 313β26.
Bao, Gang, Xiaojing Ye, Yaohua Zang, and Haomin Zhou. 2020.
βNumerical Solution of Inverse Problems by Weak Adversarial Networks.β Inverse Problems 36 (11): 115003.
Battle, Xavier L., Gregory S. Cunningham, and Kenneth M. Hanson. 1997.
β3D Tomographic Reconstruction Using Geometrical Models.β In
Medical Imaging 1997: Image Processing, 3034:346β57. SPIE.
Bissantz, Nicolai, Thorsten Hohage, and Axel Munk. 2004.
βConsistency and Rates of Convergence of Nonlinear Tikhonov Regularization with Random Noise.β Inverse Problems 20 (6): 1773β89.
Borcea, Liliana, Vladimir Druskin, and Leonid Knizhnerman. 2005.
βOn the Continuum Limit of a Discrete Inverse Spectral Problem on Optimal Finite Difference Grids.β Communications on Pure and Applied Mathematics 58 (9): 1231β79.
Brehmer, Johann, Gilles Louppe, Juan Pavez, and Kyle Cranmer. 2020.
βMining Gold from Implicit Models to Improve Likelihood-Free Inference.β Proceedings of the National Academy of Sciences 117 (10): 5242β49.
Chada, Neil K., Marco A. Iglesias, Lassi Roininen, and Andrew M. Stuart. 2018.
βParameterizations for Ensemble Kalman Inversion.β Inverse Problems 34 (5): 055009.
Chung, Hyungjin, Jeongsol Kim, Michael T. Mccann, Marc L. Klasky, and Jong Chul Ye. 2023.
βDiffusion Posterior Sampling for General Noisy Inverse Problems.β arXiv.
Cotter, S. L., M. Dashti, and A. M. Stuart. 2010.
βApproximation of Bayesian Inverse Problems for PDEs.β SIAM Journal on Numerical Analysis 48 (1): 322β45.
Cox, Dennis D. 1993.
βAn Analysis of Bayesian Inference for Nonparametric Regression.β The Annals of Statistics 21 (2): 903β23.
Cranmer, Kyle, Johann Brehmer, and Gilles Louppe. 2020.
βThe Frontier of Simulation-Based Inference.β Proceedings of the National Academy of Sciences, May.
Cui, Tiangang, and Sergey Dolgov. 2022.
βDeep Composition of Tensor-Trains Using Squared Inverse Rosenblatt Transports.β Foundations of Computational Mathematics 22 (6): 1863β1922.
DβAmbrogi, Barbara, Sari MΓ€enpÀÀ, and Markku Markkanen. 1999.
βDiscretization Independent Retrieval of Atmospheric Ozone Profile.β Geophysica 35 (1-2): 87β99.
Dashti, Masoumeh, Stephen Harris, and Andrew Stuart. 2011.
βBesov Priors for Bayesian Inverse Problems.β arXiv.
Dashti, Masoumeh, and Andrew M. Stuart. 2015.
βThe Bayesian Approach To Inverse Problems.β arXiv:1302.6989 [Math], July.
Dubrule, Olivier. 2018.
βKriging, Splines, Conditional Simulation, Bayesian Inversion and Ensemble Kalman Filtering.β In
Handbook of Mathematical Geosciences: Fifty Years of IAMG, edited by B.S. Daya Sagar, Qiuming Cheng, and Frits Agterberg, 3β24. Cham: Springer International Publishing.
Dunbar, Oliver R. A., Andrew B. Duncan, Andrew M. Stuart, and Marie-Therese Wolfram. 2022.
βEnsemble Inference Methods for Models With Noisy and Expensive Likelihoods.β SIAM Journal on Applied Dynamical Systems 21 (2): 1539β72.
Dupont, Emilien, Hyunjik Kim, S. M. Ali Eslami, Danilo Rezende, and Dan Rosenbaum. 2022.
βFrom Data to Functa: Your Data Point Is a Function and You Can Treat It Like One.β arXiv.
El-Kurdi, Yousef Malek. 2014. βParallel Finite Element Processing Using Gaussian Belief Propagation Inference on Probabilistic Graphical Models.β PhD Thesis, McGill University.
El-Kurdi, Yousef, Maryam Mehri Dehnavi, Warren J. Gross, and Dennis Giannacopoulos. 2015.
βParallel Finite Element Technique Using Gaussian Belief Propagation.β Computer Physics Communications 193 (August): 38β48.
El-Kurdi, Yousef, David Fernandez, Warren J. Gross, and Dennis D. Giannacopoulos. 2016.
βAcceleration of the Finite-Element Gaussian Belief Propagation Solver Using Minimum Residual Techniques.β IEEE Transactions on Magnetics 52 (3): 1β4.
Engl, Heinz W., Andreas Hofinger, and Stefan Kindermann. 2005.
βConvergence Rates in the Prokhorov Metric for Assessing Uncertainty in Ill-Posed Problems.β Inverse Problems 21 (1): 399β412.
Engl, Heinz W., and M. Zuhair Nashed. 1981.
βGeneralized Inverses of Random Linear Operators in Banach Spaces.β Journal of Mathematical Analysis and Applications 83 (2): 582β610.
Fitzpatrick, B. G. 1991.
βBayesian Analysis in Inverse Problems.β Inverse Problems 7 (5): 675β702.
Florens, Jean-Pierre, and Anna Simoni. 2016.
βRegularizing Priors for Linear Inverse Problems.β Econometric Theory 32 (1): 71β121.
Franklin, Joel N. 1970.
βWell-Posed Stochastic Extensions of Ill-Posed Linear Problems.β Journal of Mathematical Analysis and Applications 31 (3): 682β716.
Gahungu, Paterne, Christopher W. Lanyon, Mauricio A. Γlvarez, Engineer Bainomugisha, Michael Thomas Smith, and Richard David Wilkinson. 2022.
βAdjoint-Aided Inference of Gaussian Process Driven Differential Equations.β In.
Grigorievskiy, Alexander, Neil Lawrence, and Simo SΓ€rkkΓ€. 2017.
βParallelizable Sparse Inverse Formulation Gaussian Processes (SpInGP).β In
arXiv:1610.08035 [Stat].
Gupta, Harsh K., ed. 2021.
Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Cham: Springer International Publishing.
Guth, Philipp A., Claudia Schillings, and Simon Weissmann. 2020.
βEnsemble Kalman Filter for Neural Network Based One-Shot Inversion.β arXiv.
Holl, Philipp, Vladlen Koltun, and Nils Thuerey. 2022.
βScale-Invariant Learning by Physics Inversion.β In.
Huang, Daniel Zhengyu, Tapio Schneider, and Andrew M. Stuart. 2022.
βIterated Kalman Methodology for Inverse Problems.β Journal of Computational Physics 463 (August): 111262.
Iglesias, M. A., K. J. H. Law, and A. M. Stuart. 2012.
βMCMC for the Evaluation of Gaussian Approximations to Bayesian Inverse Problems in Groundwater Flow.β AIP Conference Proceedings 1479 (1): 920β23.
Iglesias, Marco A., Kody J. H. Law, and Andrew M. Stuart. 2013.
βEnsemble Kalman Methods for Inverse Problems.β Inverse Problems 29 (4): 045001.
Iglesias, Marco A., Kui Lin, Shuai Lu, and Andrew M. Stuart. 2015.
βFilter Based Methods For Statistical Linear Inverse Problems.β arXiv.
Jalal, Ajil, Marius Arvinte, Giannis Daras, Eric Price, Alexandros G Dimakis, and Jon Tamir. 2021.
βRobust Compressed Sensing MRI with Deep Generative Priors.β In
Advances in Neural Information Processing Systems, 34:14938β54. Curran Associates, Inc.
Jo, Hyeontae, Hwijae Son, Hyung Ju Hwang, and Eun Heui Kim. 2020.
βDeep Neural Network Approach to Forward-Inverse Problems.β Networks & Heterogeneous Media 15 (2): 247.
Kaipio, Jari, and E. Somersalo. 2005.
Statistical and Computational Inverse Problems. Applied Mathematical Sciences. New York: Springer-Verlag.
Kaipio, Jari, and Erkki Somersalo. 2007.
βStatistical Inverse Problems: Discretization, Model Reduction and Inverse Crimes.β Journal of Computational and Applied Mathematics 198 (2): 493β504.
Kennedy, Marc C., and Anthony OβHagan. 2001.
βBayesian Calibration of Computer Models.β Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63 (3): 425β64.
Knapik, B. T., A. W. van der Vaart, and J. H. van Zanten. 2011.
βBayesian Inverse Problems with Gaussian Priors.β The Annals of Statistics 39 (5).
KrΓ€mer, Nicholas, Nathanael Bosch, Jonathan Schmidt, and Philipp Hennig. 2021.
βProbabilistic ODE Solutions in Millions of Dimensions.β arXiv.
Lasanen, Sari. 2002. βDiscretizations of Generalized Random Variables with Applications to Inverse Problems.β
Lasanen, S, and L Roininen. 2005. βStatistical Inversion with Greenβs Priors.β In Proceedings of the 5th International Conference on Inverse Problems in Engineering: Theory and Practice, Cambridge, UK, 11.
Lassas, Matti, Eero Saksman, and Samuli Siltanen. 2009.
βDiscretization-Invariant Bayesian Inversion and Besov Space Priors.β Inverse Problems and Imaging 3 (1): 87β122.
Lassas, Matti, and Samuli Siltanen. 2004.
βCan One Use Total Variation Prior for Edge-Preserving Bayesian Inversion?β Inverse Problems 20 (5): 1537β63.
Lehtinen, M. S., L. Paivarinta, and E. Somersalo. 1989.
βLinear Inverse Problems for Generalised Random Variables.β Inverse Problems 5 (4): 599β612.
Liu, Xiao, Kyongmin Yeo, and Siyuan Lu. 2020.
βStatistical Modeling for Spatio-Temporal Data From Stochastic Convection-Diffusion Processes.β Journal of the American Statistical Association 0 (0): 1β18.
Lu, Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. 2021.
βDeepXDE: A Deep Learning Library for Solving Differential Equations.β SIAM Review 63 (1): 208β28.
Luschgy, H. 1996.
βLinear Estimators and Radonifying Operators.β Theory of Probability & Its Applications 40 (1): 167β75.
Magnani, Emilia, Nicholas KrΓ€mer, Runa Eschenhagen, Lorenzo Rosasco, and Philipp Hennig. 2022.
βApproximate Bayesian Neural Operators: Uncertainty Quantification for Parametric PDEs.β arXiv.
Mandelbaum, Avi. 1984.
βLinear Estimators and Measurable Linear Transformations on a Hilbert Space.β Zeitschrift FΓΌr Wahrscheinlichkeitstheorie Und Verwandte Gebiete 65 (3): 385β97.
Mosegaard, Klaus, and Albert Tarantola. 1995.
βMonte Carlo Sampling of Solutions to Inverse Problems.β Journal of Geophysical Research: Solid Earth 100 (B7): 12431β47.
βββ. 2002.
βProbabilistic Approach to Inverse Problems.β In
International Geophysics, 81:237β65. Elsevier.
NiinimΓ€ki, K., S. Siltanen, and V. Kolehmainen. 2007.
βBayesian multiresolution method for local tomography in dental x-ray imaging.β Physics in Medicine and Biology 52 (22): 6663β78.
OβHagan, A. 2006.
βBayesian Analysis of Computer Code Outputs: A Tutorial.β Reliability Engineering & System Safety, The Fourth International Conference on Sensitivity Analysis of Model Output (SAMO 2004), 91 (10): 1290β300.
Phillips, Angus, Thomas Seror, Michael John Hutchinson, Valentin De Bortoli, Arnaud Doucet, and Emile Mathieu. 2022.
βSpectral Diffusion Processes.β In.
Piiroinen, Petteri. 2005. βStatistical Measurements, Experiments and Applications.β Doctoral Thesis, Helsinki: Suomalainen Tiedeakatemia.
Pinski, F. J., G. Simpson, A. M. Stuart, and H. Weber. 2015.
βKullback-Leibler Approximation for Probability Measures on Infinite Dimensional Spaces.β SIAM Journal on Mathematical Analysis 47 (6): 4091β4122.
Plumlee, Matthew. 2017.
βBayesian Calibration of Inexact Computer Models.β Journal of the American Statistical Association 112 (519): 1274β85.
Preston, Leiph, and Christian Poppeliers. 2021.
βLDRD #218329: Uncertainty Quantification of Geophysical Inversion Using Stochastic Partial Differential Equations.β SAND2021-10885. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States).
Sambridge, Malcolm, Andrew Jackson, and Andrew P Valentine. 2022.
βGeophysical Inversion and Optimal Transport.β Geophysical Journal International 231 (1): 172β98.
Sambridge, Malcolm, and Klaus Mosegaard. 2002.
βMonte Carlo Methods in Geophysical Inverse Problems.β Reviews of Geophysics 40 (3): 3-1-3-29.
Schillings, Claudia, and Andrew M. Stuart. 2017.
βAnalysis of the Ensemble Kalman Filter for Inverse Problems.β SIAM Journal on Numerical Analysis 55 (3): 1264β90.
Schneider, Tapio, Andrew M. Stuart, and Jin-Long Wu. 2022.
βEnsemble Kalman Inversion for Sparse Learning of Dynamical Systems from Time-Averaged Data.β Journal of Computational Physics 470 (December): 111559.
Schuppen, J. H. van. 1989.
βStochastic Realization Problems.β In
Three Decades of Mathematical System Theory: A Collection of Surveys at the Occasion of the 50th Birthday of Jan C. Willems, edited by Hendrik Nijmeijer and Johannes M. Schumacher, 480β523. Lecture Notes in Control and Information Sciences. Berlin, Heidelberg: Springer.
Sigrist, Fabio Roman Albert. 2013.
βPhysics Based Dynamic Modeling of Space-Time Data.β Application/pdf. ETH Zurich.
Sigrist, Fabio, Hans R. KΓΌnsch, and Werner A. Stahel. 2015a.
βSpate : An R Package for Spatio-Temporal Modeling with a Stochastic Advection-Diffusion Process.β Application/pdf.
Journal of Statistical Software 63 (14).
βββ. 2015b.
βStochastic Partial Differential Equation Based Modelling of Large Space-Time Data Sets.β Journal of the Royal Statistical Society: Series B (Statistical Methodology) 77 (1): 3β33.
Song, Yang, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. 2022.
βScore-Based Generative Modeling Through Stochastic Differential Equations.β In.
Spantini, Alessio. 2017.
βOn the low-dimensional structure of Bayesian inference.β Thesis, Massachusetts Institute of Technology.
Stuart, Andrew M. 2010.
βInverse Problems: A Bayesian Perspective.β Acta Numerica 19: 451β559.
Stuart, Andrew M., and Aretha L. Teckentrup. 2016.
βPosterior Consistency for Gaussian Process Approximations of Bayesian Posterior Distributions.β arXiv:1603.02004 [Math], December.
Sun, Shengyang, Guodong Zhang, Jiaxin Shi, and Roger Grosse. 2019.
βFunctional Variational Bayesian Neural Networks.β In.
Tait, Daniel J., and Theodoros Damoulas. 2020.
βVariational Autoencoding of PDE Inverse Problems.β arXiv:2006.15641 [Cs, Stat], June.
Tarantola, Albert. 2005. Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM.
βββ. n.d. Mapping Of Probabilities.
Valentine, Andrew P, and Malcolm Sambridge. 2020a.
βGaussian Process ModelsβI. A Framework for Probabilistic Continuous Inverse Theory.β Geophysical Journal International 220 (3): 1632β47.
βββ. 2020b.
βGaussian Process ModelsβII. Lessons for Discrete Inversion.β Geophysical Journal International 220 (3): 1648β56.
Valentine, Andrew, and Malcolm Sambridge. 2022.
βEmerging Directions in Geophysical Inversion.β arXiv.
Wang, Ziyu, Tongzheng Ren, Jun Zhu, and Bo Zhang. 2018.
βFunction Space Particle Optimization for Bayesian Neural Networks.β In.
Welter, David E., John E. Doherty, Randall J. Hunt, Christopher T. Muffels, Matthew J. Tonkin, and Willem A. SchreΓΌder. 2012.
βApproaches in Highly Parameterized Inversion: PEST++, a Parameter Estimation Code Optimized for Large Environmental Models.βWelter, David E., Jeremy T. White, Randall J. Hunt, and John E. Doherty. 2015.
βApproaches in Highly Parameterized InversionβPEST++ Version 3, a Parameter ESTimation and Uncertainty Analysis Software Suite Optimized for Large Environmental Models.β USGS Numbered Series 7-C12. Techniques and Methods. Reston, VA: U.S. Geological Survey.
White, Jeremy T., Michael N. Fienen, and John E. Doherty. 2016a.
βpyEMU: A Python Framework for Environmental Model Uncertainty Analysis Version .01.β U.S. Geological Survey.
βββ. 2016b.
βA Python Framework for Environmental Model Uncertainty Analysis.β Environmental Modelling & Software 85 (November): 217β28.
Yang, Liu, Xuhui Meng, and George Em Karniadakis. 2021.
βB-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data.β Journal of Computational Physics 425 (January): 109913.
Zahm, Olivier, Tiangang Cui, Kody Law, Alessio Spantini, and Youssef Marzouk. 2022.
βCertified Dimension Reduction in Nonlinear Bayesian Inverse Problems.β Mathematics of Computation 91 (336): 1789β1835.
Zammit-Mangion, Andrew, Michael Bertolacci, Jenny Fisher, Ann Stavert, Matthew L. Rigby, Yi Cao, and Noel Cressie. 2021.
βWOMBAT v1.0: A fully Bayesian global flux-inversion framework.β Geoscientific Model Development Discussions, July, 1β51.
Zhang, Dongkun, Ling Guo, and George Em Karniadakis. 2020.
βLearning in Modal Space: Solving Time-Dependent Stochastic PDEs Using Physics-Informed Neural Networks.β SIAM Journal on Scientific Computing 42 (2): A639β65.
Zhang, Dongkun, Lu Lu, Ling Guo, and George Em Karniadakis. 2019.
βQuantifying Total Uncertainty in Physics-Informed Neural Networks for Solving Forward and Inverse Stochastic Problems.β Journal of Computational Physics 397 (November): 108850.
Zhang, Xin, and Andrew Curtis. 2021.
βBayesian Geophysical Inversion Using Invertible Neural Networks.β Journal of Geophysical Research: Solid Earth 126 (7): e2021JB022320.
Zhang, Zhongqiang, and George Em Karniadakis. 2017.
Numerical Methods for Stochastic Partial Differential Equations with White Noise. Vol. 196. Applied Mathematical Sciences. Cham: Springer International Publishing.
No comments yet. Why not leave one?