Altun, Yasemin, Alex J. Smola, and Thomas Hofmann. 2004.
โExponential Families for Conditional Random Fields.โ In
Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, 2โ9. UAI โ04. Arlington, Virginia, United States: AUAI Press.
Aragam, Bryon, Jiaying Gu, and Qing Zhou. 2017.
โLearning Large-Scale Bayesian Networks with the Sparsebn Package.โ arXiv:1703.04025 [Cs, Stat], March.
Aragam, Bryon, and Qing Zhou. 2015.
โConcave Penalized Estimation of Sparse Gaussian Bayesian Networks.โ Journal of Machine Learning Research 16: 2273โ2328.
Aral, Sinan, Lev Muchnik, and Arun Sundararajan. 2009.
โDistinguishing Influence-Based Contagion from Homophily-Driven Diffusion in Dynamic Networks.โ Proceedings of the National Academy of Sciences 106 (51): 21544โ49.
Arnold, Barry C., Enrique Castillo, and Jose M. Sarabia. 1999.
Conditional Specification of Statistical Models. Springer Science & Business Media.
Baddeley, A. J., and Marie-Colette NM Van Lieshout. 1995.
โArea-Interaction Point Processes.โ Annals of the Institute of Statistical Mathematics 47 (4): 601โ19.
Baddeley, A. J., Marie-Colette NM Van Lieshout, and J. Mรธller. 1996.
โMarkov Properties of Cluster Processes.โ Advances in Applied Probability 28 (2): 346โ55.
Baddeley, Adrian J, Jesper Mรธller, and Rasmus Plenge Waagepetersen. 2000.
โNon- and Semi-Parametric Estimation of Interaction in Inhomogeneous Point Patterns.โ Statistica Neerlandica 54 (3): 329โ50.
Baddeley, Adrian, and Jesper Mรธller. 1989.
โNearest-Neighbour Markov Point Processes and Random Sets.โ International Statistical Review / Revue Internationale de Statistique 57 (2): 89โ121.
Barber, David. 2012.
Bayesian Reasoning and Machine Learning. Cambridge ; New York: Cambridge University Press.
Bareinboim, Elias, Jin Tian, and Judea Pearl. 2014.
โRecovering from Selection Bias in Causal and Statistical Inference.โ In
AAAI, 2410โ16.
Bartolucci, Francesco, and Julian Besag. 2002.
โA Recursive Algorithm for Markov Random Fields.โ Biometrika 89 (3): 724โ30.
Besag, Julian. 1974.
โSpatial Interaction and the Statistical Analysis of Lattice Systems.โ Journal of the Royal Statistical Society. Series B (Methodological) 36 (2): 192โ236.
โโโ. 1975.
โStatistical Analysis of Non-Lattice Data.โ Journal of the Royal Statistical Society. Series D (The Statistician) 24 (3): 179โ95.
โโโ. 1986.
โOn the Statistical Analysis of Dirty Pictures.โ Journal of the Royal Statistical Society. Series B (Methodological) 48 (3): 259โ302.
Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning. Information Science and Statistics. New York: Springer.
Blake, Andrew, Pushmeet Kohli, and Carsten Rother, eds. 2011.
Markov Random Fields for Vision and Image Processing. Cambridge, Mass: MIT Press.
Bloniarz, Adam, Hanzhong Liu, Cun-Hui Zhang, Jasjeet Sekhon, and Bin Yu. 2015.
โLasso Adjustments of Treatment Effect Estimates in Randomized Experiments.โ arXiv:1507.03652 [Math, Stat], July.
Brodersen, Kay H., Fabian Gallusser, Jim Koehler, Nicolas Remy, and Steven L. Scott. 2015.
โInferring Causal Impact Using Bayesian Structural Time-Series Models.โ The Annals of Applied Statistics 9 (1): 247โ74.
Bu, Yunqi, and Johannes Lederer. 2017.
โIntegrating Additional Knowledge Into Estimation of Graphical Models.โ arXiv:1704.02739 [Stat], April.
Bรผhlmann, Peter, Markus Kalisch, and Lukas Meier. 2014.
โHigh-Dimensional Statistics with a View Toward Applications in Biology.โ Annual Review of Statistics and Its Application 1 (1): 255โ78.
Bรผhlmann, Peter, Philipp Rรผtimann, and Markus Kalisch. 2013.
โControlling False Positive Selections in High-Dimensional Regression and Causal Inference.โ Statistical Methods in Medical Research 22 (5): 466โ92.
Buntine, W. L. 1994.
โOperations for Learning with Graphical Models.โ Journal of Artificial Intelligence Research 2 (1): 159โ225.
Celeux, Gilles, Florence Forbes, and Nathalie Peyrard. 2003.
โEM Procedures Using Mean Field-Like Approximations for Markov Model-Based Image Segmentation.โ Pattern Recognition 36 (1): 131โ44.
Cevher, Volkan, Marco F. Duarte, Chinmay Hegde, and Richard Baraniuk. 2009.
โSparse Signal Recovery Using Markov Random Fields.โ In
Advances in Neural Information Processing Systems, 257โ64. Curran Associates, Inc.
Charniak, Eugene. 1991. โBayesian Networks Without Tears.โ AI Magazine 12 (4): 50.
Christakis, Nicholas A., and James H. Fowler. 2007.
โThe Spread of Obesity in a Large Social Network over 32 Years.โ New England Journal of Medicine 357 (4): 370โ79.
Clifford, P. 1990. โMarkov random fields in statistics.โ In Disorder in Physical Systems: A Volume in Honour of John Hammersley, edited by G. R. Grimmett and D. J. A. Welsh. Oxford England : New York: Oxford University Press.
Crisan, Dan, and Joaquรญn Mรญguez. 2014.
โParticle-Kernel Estimation of the Filter Density in State-Space Models.โ Bernoulli 20 (4): 1879โ929.
Da Costa, Lancelot, Karl Friston, Conor Heins, and Grigorios A. Pavliotis. 2021.
โBayesian Mechanics for Stationary Processes.โ arXiv:2106.13830 [Math-Ph, Physics:nlin, q-Bio], June.
Dawid, A. P. 2001.
โSeparoids: A Mathematical Framework for Conditional Independence and Irrelevance.โ Annals of Mathematics and Artificial Intelligence 32 (1-4): 335โ72.
Dawid, A. Philip. 1979.
โConditional Independence in Statistical Theory.โ Journal of the Royal Statistical Society. Series B (Methodological) 41 (1): 1โ31.
โโโ. 1980.
โConditional Independence for Statistical Operations.โ The Annals of Statistics 8 (3): 598โ617.
De Luna, Xavier, Ingeborg Waernbaum, and Thomas S. Richardson. 2011.
โCovariate Selection for the Nonparametric Estimation of an Average Treatment Effect.โ Biometrika, October, asr041.
Edwards, David, and Smitha Ankinakatte. 2015.
โContext-Specific Graphical Models for Discrete Longitudinal Data.โ Statistical Modelling 15 (4): 301โ25.
Fixx, James F. 1977. Games for the superintelligent. London: Muller.
Forbes, F., and N. Peyrard. 2003.
โHidden Markov Random Field Model Selection Criteria Based on Mean Field-Like Approximations.โ IEEE Transactions on Pattern Analysis and Machine Intelligence 25 (9): 1089โ1101.
Frey, B.J., and Nebojsa Jojic. 2005.
โA Comparison of Algorithms for Inference and Learning in Probabilistic Graphical Models.โ IEEE Transactions on Pattern Analysis and Machine Intelligence 27 (9): 1392โ1416.
Frey, Brendan J. 2003.
โExtending Factor Graphs so as to Unify Directed and Undirected Graphical Models.โ In
Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence, 257โ64. UAIโ03. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
Fridman, Arthur. 2003.
โMixed Markov Models.โ Proceedings of the National Academy of Sciences 100 (14): 8092โ96.
Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. 2008.
โSparse Inverse Covariance Estimation with the Graphical Lasso.โ Biostatistics 9 (3): 432โ41.
Geyer, Charles J., and Jesper Mรธller. 1994.
โSimulation Procedures and Likelihood Inference for Spatial Point Processes.โ Scandinavian Journal of Statistics, 359โ73.
Goldberg, David A. 2013.
โHigher Order Markov Random Fields for Independent Sets.โ arXiv:1301.1762 [Math-Ph], January.
Grenander, Ulf. 1989.
โAdvances in Pattern Theory.โ The Annals of Statistics 17 (1): 1โ30.
Griffeath, David. 1976.
โIntroduction to Random Fields.โ In
Denumerable Markov Chains, 425โ58. Graduate Texts in Mathematics 40. Springer New York.
Gu, Jiaying, Fei Fu, and Qing Zhou. 2014.
โAdaptive Penalized Estimation of Directed Acyclic Graphs From Categorical Data.โ arXiv:1403.2310 [Stat], March.
Heckerman, David, David Maxwell Chickering, Christopher Meek, Robert Rounthwaite, and Carl Kadie. 2000.
โDependency Networks for Inference, Collaborative Filtering, and Data Visualization.โ Journal of Machine Learning Research 1 (Oct): 49โ75.
Jensen, Jens Ledet, and Jesper Mรธller. 1991.
โPseudolikelihood for Exponential Family Models of Spatial Point Processes.โ The Annals of Applied Probability 1 (3): 445โ61.
Jordan, Michael I. 2004.
โGraphical Models.โ Statistical Science 19 (1): 140โ55.
Jordan, Michael I., Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul. 1999.
โAn Introduction to Variational Methods for Graphical Models.โ Machine Learning 37 (2): 183โ233.
Jordan, Michael Irwin. 1999. Learning in Graphical Models. Cambridge, Mass.: MIT Press.
Jordan, Michael I., and Yair Weiss. 2002a.
โGraphical Models: Probabilistic Inference.โ The Handbook of Brain Theory and Neural Networks, 490โ96.
โโโ. 2002b.
โProbabilistic Inference in Graphical Models.โ Handbook of Neural Networks and Brain Theory.
Kalisch, Markus, and Peter Bรผhlmann. 2007.
โEstimating High-Dimensional Directed Acyclic Graphs with the PC-Algorithm.โ Journal of Machine Learning Research 8 (May): 613โ36.
Kindermann, Ross P., and J. Laurie Snell. 1980.
โOn the Relation Between Markov Random Fields and Social Networks.โ The Journal of Mathematical Sociology 7 (1): 1โ13.
Kindermann, Ross, and J. Laurie Snell. 1980.
Markov Random Fields and Their Applications. Vol. 1. Contemporary Mathematics. Providence, Rhode Island: American Mathematical Society.
Kjรฆrulff, Uffe B., and Anders L. Madsen. 2008.
Bayesian Networks and Influence Diagrams. Information Science and Statistics. New York, NY: Springer New York.
Koller, Daphne, and Nir Friedman. 2009. Probabilistic Graphical Models : Principles and Techniques. Cambridge, MA: MIT Press.
Krรคmer, Nicole, Juliane Schรคfer, and Anne-Laure Boulesteix. 2009.
โRegularized Estimation of Large-Scale Gene Association Networks Using Graphical Gaussian Models.โ BMC Bioinformatics 10 (1): 384.
Krause, Andreas, and Carlos Guestrin. 2009. โOptimal Value of Information in Graphical Models.โ J. Artif. Int. Res. 35 (1): 557โ91.
Kschischang, F.R., B.J. Frey, and H.-A. Loeliger. 2001.
โFactor Graphs and the Sum-Product Algorithm.โ IEEE Transactions on Information Theory 47 (2): 498โ519.
Lauritzen, S. L., and D. J. Spiegelhalter. 1988.
โLocal Computations with Probabilities on Graphical Structures and Their Application to Expert Systems.โ Journal of the Royal Statistical Society. Series B (Methodological) 50 (2): 157โ224.
Lauritzen, Steffen L. 1996. Graphical Models. Oxford Statistical Science Series. Clarendon Press.
Lavrenko, Victor, and Jeremy Pickens. 2003a.
โMusic Modeling with Random Fields.โ In
Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval, 389. ACM Press.
โโโ. 2003b.
โPolyphonic Music Modeling with Random Fields.โ In
Proceedings of the Eleventh ACM International Conference on Multimedia, 120. ACM Press.
LeCun, Yann, Sumit Chopra, Raia Hadsell, M. Ranzato, and F. Huang. 2006.
โA Tutorial on Energy-Based Learning.โ In
Predicting Structured Data.
Lederer, Johannes. 2016.
โGraphical Models for Discrete and Continuous Data.โ arXiv:1609.05551 [Math, Stat], September.
Liu, Han, Fang Han, Ming Yuan, John Lafferty, and Larry Wasserman. 2012a.
โThe Nonparanormal SKEPTIC.โ arXiv:1206.6488 [Cs, Stat], June.
โโโ. 2012b.
โHigh-Dimensional Semiparametric Gaussian Copula Graphical Models.โ The Annals of Statistics 40 (4): 2293โ2326.
Liu, Han, Kathryn Roeder, and Larry Wasserman. 2010.
โStability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models.โ In
Advances in Neural Information Processing Systems 23, edited by J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, 1432โ40. Curran Associates, Inc.
Loeliger, H.-A. 2004.
โAn Introduction to Factor Graphs.โ IEEE Signal Processing Magazine 21 (1): 28โ41.
Maathuis, Marloes H., and Diego Colombo. 2013.
โA Generalized Backdoor Criterion.โ arXiv Preprint arXiv:1307.5636.
Maddage, Namunu C., Haizhou Li, and Mohan S. Kankanhalli. 2006.
โMusic Structure Based Vector Space Retrieval.โ In
Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 67. ACM Press.
Malioutov, Dmitry M., Jason K. Johnson, and Alan S. Willsky. 2006.
โWalk-Sums and Belief Propagation in Gaussian Graphical Models.โ Journal of Machine Learning Research 7 (October): 2031โ64.
Mao, Yongyi, Frank R. Kschischang, and Brendan J. Frey. 2004.
โConvolutional Factor Graphs As Probabilistic Models.โ In
Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, 374โ81. UAI โ04. Arlington, Virginia, United States: AUAI Press.
Marbach, Daniel, Robert J. Prill, Thomas Schaffter, Claudio Mattiussi, Dario Floreano, and Gustavo Stolovitzky. 2010.
โRevealing Strengths and Weaknesses of Methods for Gene Network Inference.โ Proceedings of the National Academy of Sciences 107 (14): 6286โ91.
McCallum, Andrew. 2012.
โEfficiently Inducing Features of Conditional Random Fields.โ arXiv:1212.2504 [Cs, Stat], October.
Meinshausen, Nicolai, and Peter Bรผhlmann. 2006.
โHigh-Dimensional Graphs and Variable Selection with the Lasso.โ The Annals of Statistics 34 (3): 1436โ62.
Mihalkova, Lilyana, and Raymond J. Mooney. 2007.
โBottom-up Learning of Markov Logic Network Structure.โ In
Proceedings of the 24th International Conference on Machine Learning, 625โ32. ACM.
Mohan, Karthika, and Judea Pearl. 2018.
โConsistent Estimation Given Missing Data.โ In
International Conference on Probabilistic Graphical Models, 284โ95.
Morgan, Jonathan Scott, Iman Barjasteh, Cliff Lampe, and Hayder Radha. 2014.
โThe Entropy of Attention and Popularity in Youtube Videos.โ arXiv:1412.1185 [Physics], December.
Murphy, Kevin P. 2012. Machine learning: a probabilistic perspective. 1 edition. Adaptive computation and machine learning series. Cambridge, MA: MIT Press.
Obermeyer, Fritz, Eli Bingham, Martin Jankowiak, Du Phan, and Jonathan P. Chen. 2020.
โFunctional Tensors for Probabilistic Programming.โ arXiv:1910.10775 [Cs, Stat], March.
Osokin, A., D. Vetrov, and V. Kolmogorov. 2011.
โSubmodular Decomposition Framework for Inference in Associative Markov Networks with Global Constraints.โ In
2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1889โ96.
Pearl, Judea. 1982.
โReverend Bayes on Inference Engines: A Distributed Hierarchical Approach.โ In
Proceedings of the Second AAAI Conference on Artificial Intelligence, 133โ36. AAAIโ82. Pittsburgh, Pennsylvania: AAAI Press.
โโโ. 1986.
โFusion, Propagation, and Structuring in Belief Networks.โ Artificial Intelligence 29 (3): 241โ88.
โโโ. 2008. Probabilistic reasoning in intelligent systems: networks of plausible inference. Rev.ย 2. print., 12. [Dr.]. The Morgan Kaufmann series in representation and reasoning. San Francisco, Calif: Kaufmann.
โโโ. 2009. Causality: Models, Reasoning and Inference. Cambridge University Press.
Pearl, Judea, Dan Geiger, and Thomas Verma. 1989.
โConditional Independence and Its Representations.โ Kybernetika 25 (7): 33โ44.
Pereda, E, R Q Quiroga, and J Bhattacharya. 2005. โNonlinear Multivariate Analysis of Neurophysiological Signals.โ Progress in Neurobiology 77 (1-2): 1โ37.
Pickens, Jeremy, and Costas S. Iliopoulos. 2005.
โMarkov Random Fields and Maximum Entropy Modeling for Music Information Retrieval.โ In
ISMIR, 207โ14. Citeseer.
Pollard, Dave. 2004. โHammersley-Clifford Theorem for Markov Random Fields.โ
Rabbat, Michael G., Mรrio A. T. Figueiredo, and Robert D. Nowak. 2008.
โNetwork Inference from Co-Occurrences.โ IEEE Transactions on Information Theory 54 (9): 4053โ68.
Ranzato, M. 2013.
โModeling Natural Images Using Gated MRFs.โ IEEE Transactions on Pattern Analysis and Machine Intelligence 35 (9): 2206โ22.
Ravikumar, Pradeep, Martin J. Wainwright, and John D. Lafferty. 2010.
โHigh-Dimensional Ising Model Selection Using โ1-Regularized Logistic Regression.โ The Annals of Statistics 38 (3): 1287โ1319.
Reeves, R., and A. N. Pettitt. 2004.
โEfficient Recursions for General Factorisable Models.โ Biometrika 91 (3): 751โ57.
Richardson, Matthew, and Pedro Domingos. 2006.
โMarkov Logic Networks.โ Machine Learning 62 (1-2): 107โ36.
Ripley, B. D., and F. P. Kelly. 1977.
โMarkov Point Processes.โ Journal of the London Mathematical Society s2-15 (1): 188โ92.
Sadeghi, Kayvan. 2020.
โOn Finite Exchangeability and Conditional Independence.โ Electronic Journal of Statistics 14 (2): 2773โ97.
Schmidt, Mark W., and Kevin P. Murphy. 2010.
โConvex Structure Learning in Log-Linear Models: Beyond Pairwise Potentials.โ In
International Conference on Artificial Intelligence and Statistics, 709โ16.
Shachter, Ross D. 1998.
โBayes-Ball: Rational Pastime (for Determining Irrelevance and Requisite Information in Belief Networks and Influence Diagrams).โ In
Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, 480โ87. UAIโ98. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
Shalizi, Cosma Rohilla, and Edward McFowland III. 2016.
โControlling for Latent Homophily in Social Networks Through Inferring Latent Locations.โ arXiv:1607.06565 [Physics, Stat], July.
Smith, David A., and Jason Eisner. 2008.
โDependency Parsing by Belief Propagation.โ In
Proceedings of the Conference on Empirical Methods in Natural Language Processing, 145โ56. Association for Computational Linguistics.
Spirtes, Peter, Clark Glymour, and Richard Scheines. 2001.
Causation, Prediction, and Search. Second Edition. Adaptive Computation and Machine Learning. The MIT Press.
Studenรฝ, Milan. 1997.
โA Recovery Algorithm for Chain Graphs.โ International Journal of Approximate Reasoning, Uncertainty in AI (UAIโ96) Conference, 17 (2โ3): 265โ93.
โโโ. 2005. Probabilistic Conditional Independence Structures. Information Science and Statistics. London: Springer.
Studenรฝ, Milan, and Jiลina Vejnarovรก. 1998. โOn Multiinformation Function as a Tool for Measuring Stochastic Dependence.โ In Learning in Graphical Models, 261โ97. Cambridge, Mass.: MIT Press.
Su, Ri-Qi, Wen-Xu Wang, and Ying-Cheng Lai. 2012.
โDetecting Hidden Nodes in Complex Networks from Time Series.โ Phys. Rev.ย E 85 (6): 065201.
Sutton, Charles, and Andrew McCallum. 2010.
โAn Introduction to Conditional Random Fields.โ arXiv:1011.4088, November.
Tansey, Wesley, Oscar Hernan Madrid Padilla, Arun Sai Suggala, and Pradeep Ravikumar. 2015.
โVector-Space Markov Random Fields via Exponential Families.โ In
Journal of Machine Learning Research, 684โ92.
Vetrov, Dmitry, and Anton Osokin. 2011.
โGraph Preserving Label Decomposition in Discrete MRFs with Selfish Potentials.โ In
NIPS Workshop on Discrete Optimization in Machine Learning (DISCML NIPS).
Visweswaran, Shyam, and Gregory F. Cooper. 2014.
โCounting Markov Blanket Structures.โ arXiv:1407.2483 [Cs, Stat], July.
Wainwright, Martin J., and Michael I. Jordan. 2008.
Graphical Models, Exponential Families, and Variational Inference. Vol. 1. Foundations and Trendsยฎ in Machine Learning. Now Publishers.
Wainwright, Martin, and Michael I Jordan. 2005. โA Variational Principle for Graphical Models.โ In New Directions in Statistical Signal Processing. Vol. 155. MIT Press.
Wang, Chaohui, Nikos Komodakis, and Nikos Paragios. 2013.
โMarkov Random Field Modeling, Inference & Learning in Computer Vision & Image Understanding: A Survey.โ Computer Vision and Image Understanding 117 (11): 1610โ27.
Wasserman, Larry, Mladen Kolar, and Alessandro Rinaldo. 2013.
โEstimating Undirected Graphs Under Weak Assumptions.โ arXiv:1309.6933 [Cs, Math, Stat], September.
Weiss, Yair, and William T. Freeman. 2001.
โCorrectness of Belief Propagation in Gaussian Graphical Models of Arbitrary Topology.โ Neural Computation 13 (10): 2173โ2200.
Winn, John M., and Christopher M. Bishop. 2005.
โVariational Message Passing.โ In
Journal of Machine Learning Research, 661โ94.
Wright, Sewall. 1934.
โThe Method of Path Coefficients.โ The Annals of Mathematical Statistics 5 (3): 161โ215.
Wu, Rui, R. Srikant, and Jian Ni. 2013.
โLearning Loosely Connected Markov Random Fields.โ Stochastic Systems 3 (2): 362โ404.
Yedidia, Jonathan S., W.T. Freeman, and Y. Weiss. 2005.
โConstructing Free-Energy Approximations and Generalized Belief Propagation Algorithms.โ IEEE Transactions on Information Theory 51 (7): 2282โ312.
Yedidia, J.S., W.T. Freeman, and Y. Weiss. 2003.
โUnderstanding Belief Propagation and Its Generalizations.โ In
Exploring Artificial Intelligence in the New Millennium, edited by G. Lakemeyer and B. Nebel, 239โ36. Morgan Kaufmann Publishers.
Zhang, Kun, Jonas Peters, Dominik Janzing, and Bernhard Schรถlkopf. 2012.
โKernel-Based Conditional Independence Test and Application in Causal Discovery.โ arXiv:1202.3775 [Cs, Stat], February.
Zhou, Mingyuan, Yulai Cong, and Bo Chen. 2017. โAugmentable Gamma Belief Networks,โ 44.
No comments yet. Why not leave one?