Chada, Neil K., Yuming Chen, and Daniel Sanz-Alonso. 2021.
βIterative Ensemble Kalman Methods: A Unified Perspective with Some New Variants.β Foundations of Data Science 3 (3): 331.
Chada, Neil K., Marco A. Iglesias, Lassi Roininen, and Andrew M. Stuart. 2018.
βParameterizations for Ensemble Kalman Inversion.β Inverse Problems 34 (5): 055009.
Chen, Chong, Yixuan Dou, Jie Chen, and Yaru Xue. 2022.
βA Novel Neural Network Training Framework with Data Assimilation.β The Journal of Supercomputing, June.
Dunbar, Oliver R. A., Andrew B. Duncan, Andrew M. Stuart, and Marie-Therese Wolfram. 2022.
βEnsemble Inference Methods for Models With Noisy and Expensive Likelihoods.β SIAM Journal on Applied Dynamical Systems 21 (2): 1539β72.
Guth, Philipp A., Claudia Schillings, and Simon Weissmann. 2020.
βEnsemble Kalman Filter for Neural Network Based One-Shot Inversion.β arXiv.
Huang, Daniel Zhengyu, Tapio Schneider, and Andrew M. Stuart. 2022.
βIterated Kalman Methodology for Inverse Problems.β Journal of Computational Physics 463 (August): 111262.
Iglesias, Marco A., Kody J. H. Law, and Andrew M. Stuart. 2013.
βEnsemble Kalman Methods for Inverse Problems.β Inverse Problems 29 (4): 045001.
Kovachki, Nikola B., and Andrew M. Stuart. 2019.
βEnsemble Kalman Inversion: A Derivative-Free Technique for Machine Learning Tasks.β Inverse Problems 35 (9): 095005.
Ritter, Hippolyt, Martin Kukla, Cheng Zhang, and Yingzhen Li. 2021.
βSparse Uncertainty Representation in Deep Learning with Inducing Weights.β arXiv:2105.14594 [Cs, Stat], May.
Schillings, Claudia, and Andrew M. Stuart. 2017.
βAnalysis of the Ensemble Kalman Filter for Inverse Problems.β SIAM Journal on Numerical Analysis 55 (3): 1264β90.
Taghvaei, Amirhossein, and Prashant G. Mehta. 2021.
βAn Optimal Transport Formulation of the Ensemble Kalman Filter.β IEEE Transactions on Automatic Control 66 (7): 3052β67.
Venturi, Daniele, and Xiantao Li. 2022.
βThe Mori-Zwanzig Formulation of Deep Learning.β arXiv.
Wen, Linjie, and Jinglai Li. 2022.
βAffine-Mapping Based Variational Ensemble Kalman Filter.β Statistics and Computing 32 (6): 97.
Yegenoglu, Alper, Kai Krajsek, Sandra Diaz Pier, and Michael Herty. 2020.
βEnsemble Kalman Filter Optimizing Deep Neural Networks: An Alternative Approach to Non-Performing Gradient Descent.β In
Machine Learning, Optimization, and Data Science, edited by Giuseppe Nicosia, Varun Ojha, Emanuele La Malfa, Giorgio Jansen, Vincenzo Sciacca, Panos Pardalos, Giovanni Giuffrida, and Renato Umeton, 12566:78β92. Cham: Springer International Publishing.
No comments yet. Why not leave one?