\[\renewcommand{\var}{\operatorname{Var}} \renewcommand{\dd}{\mathrm{d}} \renewcommand{\pd}{\partial} \renewcommand{\bb}[1]{\mathbb{#1}} \renewcommand{\bf}[1]{\mathbf{#1}} \renewcommand{\vv}[1]{\boldsymbol{#1}} \renewcommand{\mm}[1]{\mathrm{#1}} \renewcommand{\cc}[1]{\mathcal{#1}} \renewcommand{\oo}[1]{\operatorname{#1}} \renewcommand{\gvn}{\mid} \renewcommand{\II}{\mathbb{I}}\]
A bridge process for some time-indexed Markov process \(\{\Lambda(t)\}_{t\in[S,T]}\) is obtained from that process by conditioning it to attain a fixed value \(\Lambda(T)=Y\) starting from \(\Lambda(S)=X\) on some interval \([S,T]\). We write that as \(\{\Lambda(t)\mid \Lambda(S)=X,\Lambda(T)=Y\}_{t\in[S,T]}.\) Put another way, given the starting and finishing values of a stochastic markov process, I would like to rewind time to find out the values of its path at a midpoint which is “compatible” with the endpoints.1
I am mostly interested in this for Lévy processes in particular, rather than arbitrary Markov processes. There is an introduction for these in (Bertoin 1996, VIII.3) but I an not sure that it permits processes with jumps.
For a fairly old and simple concept, work in the area skews surprisingly recent (i.e post 1990), given that applications seem to cite the early, gruelling (Doob 1957) as the foundation; perhaps for about 30 years no-one wanted to learn enough potential theory to make it go.
It is trivial (more or less) to derive the properties of the bridge for a Wiener process, so that can be found in every stochastic processes textbook.
Alexandre Hoang Thiery describes Doob’s h-transform method and notes that while it might be good for deducing certain properties of the paths of such a conditioned process it is not necessarily a good way of sampling it.
(Fitzsimmons, Pitman, and Yor 1993) give us a fairly general bunch of methods for handling the properties of bridges, and (Perman, Pitman, and Yor 1992) give similar tools for pure-jump processes (Poisson, gamma).
🏗
References
There is a more general version given in (Privault and Zambrini 2004) where the initial and final states of the process are permitted to have distributions rather than fixed values.↩︎