Aicher, Christopher, Nicholas J. Foti, and Emily B. Fox. 2020.
“Adaptively Truncating Backpropagation Through Time to Control Gradient Bias.” In
Proceedings of The 35th Uncertainty in Artificial Intelligence Conference, 799–808. PMLR.
Andrieu, Christophe, Arnaud Doucet, and Roman Holenstein. 2010.
“Particle Markov Chain Monte Carlo Methods.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 72 (3): 269–342.
Archer, Evan, Il Memming Park, Lars Buesing, John Cunningham, and Liam Paninski. 2015.
“Black Box Variational Inference for State Space Models.” arXiv:1511.07367 [Stat], November.
Babtie, Ann C., Paul Kirk, and Michael P. H. Stumpf. 2014.
“Topological Sensitivity Analysis for Systems Biology.” Proceedings of the National Academy of Sciences 111 (52): 18507–12.
Bamler, Robert, and Stephan Mandt. 2017.
“Structured Black Box Variational Inference for Latent Time Series Models.” arXiv:1707.01069 [Cs, Stat], July.
Becker, Philipp, Harit Pandya, Gregor Gebhardt, Cheng Zhao, C. James Taylor, and Gerhard Neumann. 2019.
“Recurrent Kalman Networks: Factorized Inference in High-Dimensional Deep Feature Spaces.” In
International Conference on Machine Learning, 544–52.
Bengio, Y., P. Simard, and P. Frasconi. 1994.
“Learning Long-Term Dependencies with Gradient Descent Is Difficult.” IEEE Transactions on Neural Networks 5 (2): 157–66.
Box, George E. P., Gwilym M. Jenkins, Gregory C. Reinsel, and Greta M. Ljung. 2016. Time Series Analysis: Forecasting and Control. Fifth edition. Wiley Series in Probability and Statistics. Hoboken, New Jersey: John Wiley & Sons, Inc.
Brandstetter, Johannes, Daniel Worrall, and Max Welling. 2022.
“Message Passing Neural PDE Solvers.” In
International Conference on Learning Representations.
Bretó, Carles, Daihai He, Edward L. Ionides, and Aaron A. King. 2009.
“Time Series Analysis via Mechanistic Models.” The Annals of Applied Statistics 3 (1): 319–48.
Brunton, Steven L., Joshua L. Proctor, and J. Nathan Kutz. 2016.
“Discovering Governing Equations from Data by Sparse Identification of Nonlinear Dynamical Systems.” Proceedings of the National Academy of Sciences 113 (15): 3932–37.
Chevillon, Guillaume. 2007.
“Direct Multi-Step Estimation and Forecasting.” Journal of Economic Surveys 21 (4): 746–85.
Chung, Junyoung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua Bengio. 2015.
“A Recurrent Latent Variable Model for Sequential Data.” In
Advances in Neural Information Processing Systems 28, edited by C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, 2980–88. Curran Associates, Inc.
Corenflos, Adrien, James Thornton, George Deligiannidis, and Arnaud Doucet. 2021.
“Differentiable Particle Filtering via Entropy-Regularized Optimal Transport.” arXiv:2102.07850 [Cs, Stat], June.
Del Moral, Pierre, Arnaud Doucet, and Ajay Jasra. 2006.
“Sequential Monte Carlo Samplers.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 68 (3): 411–36.
Doucet, Arnaud, Nando Freitas, and Neil Gordon. 2001.
Sequential Monte Carlo Methods in Practice. New York, NY: Springer New York.
Drovandi, Christopher C., Anthony N. Pettitt, and Roy A. McCutchan. 2016.
“Exact and Approximate Bayesian Inference for Low Integer-Valued Time Series Models with Intractable Likelihoods.” Bayesian Analysis 11 (2): 325–52.
Durbin, J., and S. J. Koopman. 2012. Time Series Analysis by State Space Methods. 2nd ed. Oxford Statistical Science Series 38. Oxford: Oxford University Press.
Errico, Ronald M. 1997.
“What Is an Adjoint Model?” Bulletin of the American Meteorological Society 78 (11): 2577–92.
Fearnhead, Paul, and Hans R. Künsch. 2018.
“Particle Filters and Data Assimilation.” Annual Review of Statistics and Its Application 5 (1): 421–49.
Gahungu, Paterne, Christopher W. Lanyon, Mauricio A. Álvarez, Engineer Bainomugisha, Michael Thomas Smith, and Richard David Wilkinson. 2022.
“Adjoint-Aided Inference of Gaussian Process Driven Differential Equations.” In.
Godwin, Jonathan, Michael Schaarschmidt, Alexander Gaunt, Alvaro Sanchez-Gonzalez, Yulia Rubanova, Petar Veličković, James Kirkpatrick, and Peter Battaglia. 2022.
“Simple GNN Regularisation for 3D Molecular Property Prediction & Beyond.” arXiv.
He, Daihai, Edward L. Ionides, and Aaron A. King. 2010.
“Plug-and-Play Inference for Disease Dynamics: Measles in Large and Small Populations as a Case Study.” Journal of The Royal Society Interface 7 (43): 271–83.
Hurvich, Clifford M. 2002.
“Multistep Forecasting of Long Memory Series Using Fractional Exponential Models.” International Journal of Forecasting, Forecasting Long Memory Processes, 18 (2): 167–79.
Hürzeler, Markus, and Hans R. Künsch. 2001.
“Approximating and Maximising the Likelihood for a General State-Space Model.” In
Sequential Monte Carlo Methods in Practice, 159–75. Statistics for Engineering and Information Science. Springer, New York, NY.
Ingraham, John, and Debora Marks. 2017.
“Variational Inference for Sparse and Undirected Models.” In
PMLR, 1607–16.
Innes, Michael. 2018.
“Don’t Unroll Adjoint: Differentiating SSA-Form Programs.” arXiv:1810.07951 [Cs], October.
Ionides, E. L., C. Bretó, and A. A. King. 2006.
“Inference for Nonlinear Dynamical Systems.” Proceedings of the National Academy of Sciences 103 (49): 18438–43.
Ionides, Edward L., Anindya Bhadra, Yves Atchadé, and Aaron King. 2011.
“Iterated Filtering.” The Annals of Statistics 39 (3): 1776–1802.
Ionides, Edward L., Dao Nguyen, Yves Atchadé, Stilian Stoev, and Aaron A. King. 2015.
“Inference for Dynamic and Latent Variable Models via Iterated, Perturbed Bayes Maps.” Proceedings of the National Academy of Sciences 112 (3): 719–24.
Kantas, N., A. Doucet, S. S. Singh, and J. M. Maciejowski. 2009.
“An Overview of Sequential Monte Carlo Methods for Parameter Estimation in General State-Space Models.” IFAC Proceedings Volumes, 15th IFAC Symposium on System Identification, 42 (10): 774–85.
Kantas, Nikolas, Arnaud Doucet, Sumeetpal S. Singh, Jan Maciejowski, and Nicolas Chopin. 2015.
“On Particle Methods for Parameter Estimation in State-Space Models.” Statistical Science 30 (3): 328–51.
Kidger, Patrick, Ricky T. Q. Chen, and Terry J. Lyons. 2021.
“‘Hey, That’s Not an ODE’: Faster ODE Adjoints via Seminorms.” In
Proceedings of the 38th International Conference on Machine Learning, 5443–52. PMLR.
Kidger, Patrick, James Morrill, James Foster, and Terry Lyons. 2020.
“Neural Controlled Differential Equations for Irregular Time Series.” arXiv:2005.08926 [Cs, Stat], November.
Kitagawa, Genshiro. 1998.
“A Self-Organizing State-Space Model.” Journal of the American Statistical Association, 1203–15.
Krishnan, Rahul G., Uri Shalit, and David Sontag. 2015.
“Deep Kalman Filters.” arXiv Preprint arXiv:1511.05121.
———. 2017.
“Structured Inference Networks for Nonlinear State Space Models.” In
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, 2101–9.
Lamb, Alex, Anirudh Goyal, Ying Zhang, Saizheng Zhang, Aaron Courville, and Yoshua Bengio. 2016.
“Professor Forcing: A New Algorithm for Training Recurrent Networks.” In
Advances In Neural Information Processing Systems.
Le, Tuan Anh, Maximilian Igl, Tom Jin, Tom Rainforth, and Frank Wood. 2017.
“Auto-Encoding Sequential Monte Carlo.” arXiv Preprint arXiv:1705.10306.
Legenstein, Robert, Christian Naeger, and Wolfgang Maass. 2005.
“What Can a Neuron Learn with Spike-Timing-Dependent Plasticity?” Neural Computation 17 (11): 2337–82.
Lele, Subhash R., Khurram Nadeem, and Byron Schmuland. 2010.
“Estimability and Likelihood Inference for Generalized Linear Mixed Models Using Data Cloning.” Journal of the American Statistical Association 105 (492): 1617–25.
Li, Xuechen, Ting-Kam Leonard Wong, Ricky T. Q. Chen, and David Duvenaud. 2020.
“Scalable Gradients for Stochastic Differential Equations.” In
International Conference on Artificial Intelligence and Statistics, 3870–82. PMLR.
Lillicrap, Timothy P, and Adam Santoro. 2019.
“Backpropagation Through Time and the Brain.” Current Opinion in Neurobiology, Machine Learning, Big Data, and Neuroscience, 55 (April): 82–89.
Lindström, Erik, Edward Ionides, Jan Frydendall, and Henrik Madsen. 2012.
“Efficient Iterated Filtering.” In
IFAC-PapersOnLine (System Identification, Volume 16), 45:1785–90. 16th IFAC Symposium on System Identification. IFAC & Elsevier Ltd.
Lindström, Erik, Jonas Ströjby, Mats Brodén, Magnus Wiktorsson, and Jan Holst. 2008.
“Sequential Calibration of Options.” Computational Statistics & Data Analysis 52 (6): 2877–91.
Liu, Jane, and Mike West. 2001.
“Combined Parameter and State Estimation in Simulation-Based Filtering.” In
Sequential Monte Carlo Methods in Practice, 197–223. Statistics for Engineering and Information Science. Springer, New York, NY.
Ljung, Lennart, Georg Ch Pflug, and Harro Walk. 2012.
Stochastic Approximation and Optimization of Random Systems. Vol. 17. Birkhäuser.
Ljung, Lennart, and Torsten Söderström. 1983. Theory and Practice of Recursive Identification. The MIT Press Series in Signal Processing, Optimization, and Control 4. Cambridge, Mass: MIT Press.
Maddison, Chris J., Dieterich Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi, Andriy Mnih, Arnaud Doucet, and Yee Whye Teh. 2017.
“Filtering Variational Objectives.” arXiv Preprint arXiv:1705.09279.
Mayr, Andreas, Sebastian Lehner, Arno Mayrhofer, Christoph Kloss, Sepp Hochreiter, and Johannes Brandstetter. 2023.
“Boundary Graph Neural Networks for 3D Simulations.” arXiv.
Mitusch, Sebastian K., Simon W. Funke, and Jørgen S. Dokken. 2019.
“Dolfin-Adjoint 2018.1: Automated Adjoints for FEniCS and Firedrake.” Journal of Open Source Software 4 (38): 1292.
Moradkhani, Hamid, Soroosh Sorooshian, Hoshin V. Gupta, and Paul R. Houser. 2005.
“Dual State–Parameter Estimation of Hydrological Models Using Ensemble Kalman Filter.” Advances in Water Resources 28 (2): 135–47.
Naesseth, Christian A., Scott W. Linderman, Rajesh Ranganath, and David M. Blei. 2017.
“Variational Sequential Monte Carlo.” arXiv Preprint arXiv:1705.11140.
Oliva, Junier B., Barnabas Poczos, and Jeff Schneider. 2017.
“The Statistical Recurrent Unit.” arXiv:1703.00381 [Cs, Stat], March.
Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio. 2013.
“On the Difficulty of Training Recurrent Neural Networks.” In
arXiv:1211.5063 [Cs], 1310–18.
Rackauckas, Christopher, Yingbo Ma, Vaibhav Dixit, Xingjian Guo, Mike Innes, Jarrett Revels, Joakim Nyberg, and Vijay Ivaturi. 2018.
“A Comparison of Automatic Differentiation and Continuous Sensitivity Analysis for Derivatives of Differential Equation Solutions.” arXiv:1812.01892 [Cs], December.
Sanchez-Gonzalez, Alvaro, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter Battaglia. 2020.
“Learning to Simulate Complex Physics with Graph Networks.” In
Proceedings of the 37th International Conference on Machine Learning, 8459–68. PMLR.
Sjöberg, Jonas, Qinghua Zhang, Lennart Ljung, Albert Benveniste, Bernard Delyon, Pierre-Yves Glorennec, Håkan Hjalmarsson, and Anatoli Juditsky. 1995.
“Nonlinear Black-Box Modeling in System Identification: A Unified Overview.” Automatica, Trends in System Identification, 31 (12): 1691–1724.
Söderström, T., and P. Stoica, eds. 1988. System Identification. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.
Sutskever, Ilya. 2013.
“Training Recurrent Neural Networks.” PhD Thesis, Toronto, Ont., Canada, Canada: University of Toronto.
Takamoto, Makoto, Timothy Praditia, Raphael Leiteritz, Dan MacKinlay, Francesco Alesiani, Dirk Pflüger, and Mathias Niepert. 2022.
“PDEBench: An Extensive Benchmark for Scientific Machine Learning.” In.
Tallec, Corentin, and Yann Ollivier. 2017.
“Unbiasing Truncated Backpropagation Through Time.” arXiv.
Tippett, Michael K., Jeffrey L. Anderson, Craig H. Bishop, Thomas M. Hamill, and Jeffrey S. Whitaker. 2003.
“Ensemble Square Root Filters.” Monthly Weather Review 131 (7): 1485–90.
Wen, Ruofeng, Kari Torkkola, and Balakrishnan Narayanaswamy. 2017.
“A Multi-Horizon Quantile Recurrent Forecaster.” arXiv:1711.11053 [Stat], November.
Williams, Ronald J., and David Zipser. 1989.
“A Learning Algorithm for Continually Running Fully Recurrent Neural Networks.” Neural Computation 1 (2): 270–80.
No comments yet. Why not leave one?