Abbasnejad, Ehsan, Anthony Dick, and Anton van den Hengel. 2016.
βInfinite Variational Autoencoder for Semi-Supervised Learning.β In
Advances in Neural Information Processing Systems 29.
Alexanderian, Alen, Noemi Petra, Georg Stadler, and Omar Ghattas. 2016.
βA Fast and Scalable Method for A-Optimal Design of Experiments for Infinite-Dimensional Bayesian Nonlinear Inverse Problems.β SIAM Journal on Scientific Computing 38 (1): A243β72.
Alexos, Antonios, Alex J. Boyd, and Stephan Mandt. 2022.
βStructured Stochastic Gradient MCMC.β In
Proceedings of the 39th International Conference on Machine Learning, 414β34. PMLR.
Alquier, Pierre. 2021.
βUser-Friendly Introduction to PAC-Bayes Bounds.β arXiv:2110.11216 [Cs, Math, Stat], October.
Archer, Evan, Il Memming Park, Lars Buesing, John Cunningham, and Liam Paninski. 2015.
βBlack Box Variational Inference for State Space Models.β arXiv:1511.07367 [Stat], November.
Bao, Gang, Xiaojing Ye, Yaohua Zang, and Haomin Zhou. 2020.
βNumerical Solution of Inverse Problems by Weak Adversarial Networks.β Inverse Problems 36 (11): 115003.
Baydin, AtΔ±lΔ±m GΓΌneΕ, Lei Shao, Wahid Bhimji, Lukas Heinrich, Lawrence Meadows, Jialin Liu, Andreas Munk, et al. 2019.
βEtalumis: Bringing Probabilistic Programming to Scientific Simulators at Scale.β In
arXiv:1907.03382 [Cs, Stat].
Bazzani, Loris, Lorenzo Torresani, and Hugo Larochelle. 2017. βRecurrent Mixture Density Network for Spatiotemporal Visual Attention,β 15.
Berg, Rianne van den, Leonard Hasenclever, Jakub M. Tomczak, and Max Welling. 2018.
βSylvester Normalizing Flows for Variational Inference.β In
UAI18.
Bishop, Christopher. 1994.
βMixture Density Networks.β Microsoft Research, January.
Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning. Information Science and Statistics. New York: Springer.
Blundell, Charles, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. 2015.
βWeight Uncertainty in Neural Networks.β In
Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37, 1613β22. ICMLβ15. Lille, France: JMLR.org.
Bora, Ashish, Ajil Jalal, Eric Price, and Alexandros G. Dimakis. 2017.
βCompressed Sensing Using Generative Models.β In
International Conference on Machine Learning, 537β46.
Breslow, N. E., and D. G. Clayton. 1993.
βApproximate Inference in Generalized Linear Mixed Models.β Journal of the American Statistical Association 88 (421): 9β25.
Bui, Thang D., Sujith Ravi, and Vivek Ramavajjala. 2017.
βNeural Graph Machines: Learning Neural Networks Using Graphs.β arXiv:1703.04818 [Cs], March.
Castro, Pablo de, and Tommaso Dorigo. 2019.
βINFERNO: Inference-Aware Neural Optimisation.β Computer Physics Communications 244 (November): 170β79.
Chada, Neil, and Xin Tong. 2022.
βConvergence Acceleration of Ensemble Kalman Inversion in Nonlinear Settings.β Mathematics of Computation 91 (335): 1247β80.
Charpentier, Bertrand, Oliver Borchert, Daniel ZΓΌgner, Simon Geisler, and Stephan GΓΌnnemann. 2022.
βNatural Posterior Network: Deep Bayesian Uncertainty for Exponential Family Distributions.β arXiv:2105.04471 [Cs, Stat], March.
Chen, Tian Qi, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. 2018.
βNeural Ordinary Differential Equations.β In
Advances in Neural Information Processing Systems 31, edited by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, 6572β83. Curran Associates, Inc.
Chen, Wilson Ye, Lester Mackey, Jackson Gorham, Francois-Xavier Briol, and Chris Oates. 2018.
βStein Points.β In
Proceedings of the 35th International Conference on Machine Learning, 844β53. PMLR.
Chu, Xu, Yujie Jin, Wenwu Zhu, Yasha Wang, Xin Wang, Shanghang Zhang, and Hong Mei. 2022.
βDNA: Domain Generalization with Diversified Neural Averaging.β In
Proceedings of the 39th International Conference on Machine Learning, 4010β34. PMLR.
Cutajar, Kurt, Edwin V. Bonilla, Pietro Michiardi, and Maurizio Filippone. 2017.
βRandom Feature Expansions for Deep Gaussian Processes.β In
PMLR.
Damianou, Andreas, and Neil Lawrence. 2013.
βDeep Gaussian Processes.β In
Artificial Intelligence and Statistics, 207β15.
Dandekar, Raj, Karen Chung, Vaibhav Dixit, Mohamed Tarek, Aslan Garcia-Valadez, Krishna Vishal Vemula, and Chris Rackauckas. 2021.
βBayesian Neural Ordinary Differential Equations.β arXiv:2012.07244 [Cs], March.
Daxberger, Erik, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and Philipp Hennig. 2021.
βLaplace Redux β Effortless Bayesian Deep Learning.β In
arXiv:2106.14806 [Cs, Stat].
Dezfouli, Amir, and Edwin V. Bonilla. 2015.
βScalable Inference for Gaussian Process Models with Black-Box Likelihoods.β In
Advances in Neural Information Processing Systems 28, 1414β22. NIPSβ15. Cambridge, MA, USA: MIT Press.
Doerr, Andreas, Christian Daniel, Martin Schiegg, Duy Nguyen-Tuong, Stefan Schaal, Marc Toussaint, and Sebastian Trimpe. 2018.
βProbabilistic Recurrent State-Space Models.β arXiv:1801.10395 [Stat], January.
Dunlop, Matthew M., Mark A. Girolami, Andrew M. Stuart, and Aretha L. Teckentrup. 2018.
βHow Deep Are Deep Gaussian Processes?β Journal of Machine Learning Research 19 (1): 2100β2145.
Dupont, Emilien, Arnaud Doucet, and Yee Whye Teh. 2019.
βAugmented Neural ODEs.β arXiv:1904.01681 [Cs, Stat], April.
Dusenberry, Michael, Ghassen Jerfel, Yeming Wen, Yian Ma, Jasper Snoek, Katherine Heller, Balaji Lakshminarayanan, and Dustin Tran. 2020.
βEfficient and Scalable Bayesian Neural Nets with Rank-1 Factors.β In
Proceedings of the 37th International Conference on Machine Learning, 2782β92. PMLR.
Dutordoir, Vincent, James Hensman, Mark van der Wilk, Carl Henrik Ek, Zoubin Ghahramani, and Nicolas Durrande. 2021.
βDeep Neural Networks as Point Estimates for Deep Gaussian Processes.β In
arXiv:2105.04504 [Cs, Stat].
Eleftheriadis, Stefanos, Tom Nicholson, Marc Deisenroth, and James Hensman. 2017.
βIdentification of Gaussian Process State Space Models.β In
Advances in Neural Information Processing Systems 30, edited by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, 5309β19. Curran Associates, Inc.
Fabius, Otto, and Joost R. van Amersfoort. 2014.
βVariational Recurrent Auto-Encoders.β In
Proceedings of ICLR.
Figurnov, Mikhail, Shakir Mohamed, and Andriy Mnih. 2018.
βImplicit Reparameterization Gradients.β In
Advances in Neural Information Processing Systems 31, edited by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, 441β52. Curran Associates, Inc.
Flaxman, Seth, Andrew Gordon Wilson, Daniel B Neill, Hannes Nickisch, and Alexander J Smola. 2015. βFast Kronecker Inference in Gaussian Processes with Non-Gaussian Likelihoods.β In, 10.
Flunkert, Valentin, David Salinas, and Jan Gasthaus. 2017.
βDeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks.β arXiv:1704.04110 [Cs, Stat], April.
Foong, Andrew Y. K., Yingzhen Li, JosΓ© Miguel HernΓ‘ndez-Lobato, and Richard E. Turner. 2019.
ββIn-Betweenβ Uncertainty in Bayesian Neural Networks.β arXiv:1906.11537 [Cs, Stat], June.
Fortuin, Vincent. 2022.
βPriors in Bayesian Deep Learning: A Review.β International Statistical Review 90 (3): 563β91.
Gal, Yarin. 2015. βRapid Prototyping of Probabilistic Models: Emerging Challenges in Variational Inference.β In Advances in Approximate Bayesian Inference Workshop, NIPS.
βββ. 2016. βUncertainty in Deep Learning.β University of Cambridge.
Gal, Yarin, and Zoubin Ghahramani. 2015a. βOn Modern Deep Learning and Variational Inference.β In Advances in Approximate Bayesian Inference Workshop, NIPS.
βββ. 2015b.
βDropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning.β In
Proceedings of the 33rd International Conference on Machine Learning (ICML-16).
βββ. 2016b.
βBayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference.β In
4th International Conference on Learning Representations (ICLR) Workshop Track.
βββ. 2016c.
βDropout as a Bayesian Approximation: Appendix.β arXiv:1506.02157 [Stat], May.
Gal, Yarin, Jiri Hron, and Alex Kendall. 2017.
βConcrete Dropout.β arXiv:1705.07832 [Stat], May.
Garnelo, Marta, Dan Rosenbaum, Chris J. Maddison, Tiago Ramalho, David Saxton, Murray Shanahan, Yee Whye Teh, Danilo J. Rezende, and S. M. Ali Eslami. 2018.
βConditional Neural Processes.β arXiv:1807.01613 [Cs, Stat], July, 10.
Garnelo, Marta, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J. Rezende, S. M. Ali Eslami, and Yee Whye Teh. 2018.
βNeural Processes,β July.
Gholami, Amir, Kurt Keutzer, and George Biros. 2019.
βANODE: Unconditionally Accurate Memory-Efficient Gradients for Neural ODEs.β arXiv:1902.10298 [Cs], February.
Giryes, R., G. Sapiro, and A. M. Bronstein. 2016.
βDeep Neural Networks with Random Gaussian Weights: A Universal Classification Strategy?β IEEE Transactions on Signal Processing 64 (13): 3444β57.
Gorad, Ajinkya, Zheng Zhao, and Simo SΓ€rkkΓ€. 2020. βParameter Estimation in Non-Linear State-Space Models by Automatic Differentiation of Non-Linear Kalman Filters.β In, 6.
Gourieroux, C., A. Monfort, and E. Renault. 1993.
βIndirect Inference.β Journal of Applied Econometrics 8 (December): S85β118.
Graves, Alex. 2011.
βPractical Variational Inference for Neural Networks.β In
Proceedings of the 24th International Conference on Neural Information Processing Systems, 2348β56. NIPSβ11. USA: Curran Associates Inc.
βββ. 2013.
βGenerating Sequences With Recurrent Neural Networks.β arXiv:1308.0850 [Cs], August.
Graves, Alex, Abdel-rahman Mohamed, and Geoffrey Hinton. 2013.
βSpeech Recognition with Deep Recurrent Neural Networks.β In
2013 IEEE International Conference on Acoustics, Speech and Signal Processing.
Gregor, Karol, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra. 2015.
βDRAW: A Recurrent Neural Network For Image Generation.β arXiv:1502.04623 [Cs], February.
Gu, Shixiang, Zoubin Ghahramani, and Richard E Turner. 2015.
βNeural Adaptive Sequential Monte Carlo.β In
Advances in Neural Information Processing Systems 28, edited by C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, 2629β37. Curran Associates, Inc.
Gu, Shixiang, Sergey Levine, Ilya Sutskever, and Andriy Mnih. 2016.
βMuProp: Unbiased Backpropagation for Stochastic Neural Networks.β In
Proceedings of ICLR.
Guo, Chuan, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. 2017.
βOn Calibration of Modern Neural Networks.β arXiv.
He, Bobby, Balaji Lakshminarayanan, and Yee Whye Teh. 2020.
βBayesian Deep Ensembles via the Neural Tangent Kernel.β In
Advances in Neural Information Processing Systems. Vol. 33.
Hoffman, Matthew, and David Blei. 2015.
βStochastic Structured Variational Inference.β In
PMLR, 361β69.
Hu, Zhiting, Zichao Yang, Ruslan Salakhutdinov, and Eric P. Xing. 2018.
βOn Unifying Deep Generative Models.β In
arXiv:1706.00550 [Cs, Stat].
Huggins, Jonathan H., Trevor Campbell, MikoΕaj Kasprzak, and Tamara Broderick. 2018.
βPractical Bounds on the Error of Bayesian Posterior Approximations: A Nonasymptotic Approach.β arXiv:1809.09505 [Cs, Math, Stat], September.
Immer, Alexander, Matthias Bauer, Vincent Fortuin, Gunnar RΓ€tsch, and Khan Mohammad Emtiyaz. 2021.
βScalable Marginal Likelihood Estimation for Model Selection in Deep Learning.β In
Proceedings of the 38th International Conference on Machine Learning, 4563β73. PMLR.
Immer, Alexander, Maciej Korzepa, and Matthias Bauer. 2021.
βImproving Predictions of Bayesian Neural Nets via Local Linearization.β In
International Conference on Artificial Intelligence and Statistics, 703β11. PMLR.
Ingebrigtsen, Rikke, Finn Lindgren, and Ingelin Steinsland. 2014.
βSpatial Models with Explanatory Variables in the Dependence Structure.β Spatial Statistics, Spatial Statistics Miami, 8 (May): 20β38.
Izmailov, Pavel, Wesley J. Maddox, Polina Kirichenko, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson. 2020.
βSubspace Inference for Bayesian Deep Learning.β In
Proceedings of The 35th Uncertainty in Artificial Intelligence Conference, 1169β79. PMLR.
Izmailov, Pavel, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson. 2018.
βAveraging Weights Leads to Wider Optima and Better Generalization,β March.
Jospin, Laurent Valentin, Wray Buntine, Farid Boussaid, Hamid Laga, and Mohammed Bennamoun. 2022.
βHands-on Bayesian Neural Networks β a Tutorial for Deep Learning Users.β arXiv:2007.06823 [Cs, Stat], January.
Karl, Maximilian, Maximilian Soelch, Justin Bayer, and Patrick van der Smagt. 2016.
βDeep Variational Bayes Filters: Unsupervised Learning of State Space Models from Raw Data.β In
Proceedings of ICLR.
Khan, Mohammad Emtiyaz, Alexander Immer, Ehsan Abedi, and Maciej Korzepa. 2020.
βApproximate Inference Turns Deep Networks into Gaussian Processes.β arXiv:1906.01930 [Cs, Stat], July.
Khan, Mohammad Emtiyaz, and HΓ₯vard Rue. 2022.
βThe Bayesian Learning Rule.β arXiv.
Kingma, Diederik P., Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. 2016.
βImproving Variational Inference with Inverse Autoregressive Flow.β In
Advances in Neural Information Processing Systems 29. Curran Associates, Inc.
Kingma, Diederik P., and Max Welling. 2014.
βAuto-Encoding Variational Bayes.β In
ICLR 2014 Conference.
Kovachki, Nikola B., and Andrew M. Stuart. 2019.
βEnsemble Kalman Inversion: A Derivative-Free Technique for Machine Learning Tasks.β Inverse Problems 35 (9): 095005.
Krauth, Karl, Edwin V. Bonilla, Kurt Cutajar, and Maurizio Filippone. 2016.
βAutoGP: Exploring the Capabilities and Limitations of Gaussian Process Models.β In
UAI17.
Krishnan, Rahul G., Uri Shalit, and David Sontag. 2015.
βDeep Kalman Filters.β arXiv Preprint arXiv:1511.05121.
Kristiadi, Agustinus, Matthias Hein, and Philipp Hennig. 2020.
βBeing Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks.β In
ICML 2020.
βββ. 2021b.
βLearnable Uncertainty Under Laplace Approximations.β In
Uncertainty in Artificial Intelligence.
Larsen, Anders Boesen Lindbo, SΓΈren Kaae SΓΈnderby, Hugo Larochelle, and Ole Winther. 2015.
βAutoencoding Beyond Pixels Using a Learned Similarity Metric.β arXiv:1512.09300 [Cs, Stat], December.
Le, Tuan Anh, AtΔ±lΔ±m GΓΌneΕ Baydin, and Frank Wood. 2017.
βInference Compilation and Universal Probabilistic Programming.β In
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS), 54:1338β48. Proceedings of Machine Learning Research. Fort Lauderdale, FL, USA: PMLR.
Le, Tuan Anh, Maximilian Igl, Tom Jin, Tom Rainforth, and Frank Wood. 2017.
βAuto-Encoding Sequential Monte Carlo.β arXiv Preprint arXiv:1705.10306.
Lee, Herbert K. H., Dave M. Higdon, Zhuoxin Bi, Marco A. R. Ferreira, and Mike West. 2002.
βMarkov Random Field Models for High-Dimensional Parameters in Simulations of Fluid Flow in Porous Media.β Technometrics 44 (3): 230β41.
Lee, Jaehoon, Yasaman Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Pennington, and Jascha Sohl-Dickstein. 2018.
βDeep Neural Networks as Gaussian Processes.β In
ICLR.
Lindgren, Finn, and HΓ₯vard Rue. 2015.
βBayesian Spatial Modelling with R-INLA.β Journal of Statistical Software 63 (i19): 1β25.
Liu, Qiang, and Dilin Wang. 2019.
βStein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm.β In
Advances In Neural Information Processing Systems.
Liu, Xiao, Kyongmin Yeo, and Siyuan Lu. 2020.
βStatistical Modeling for Spatio-Temporal Data From Stochastic Convection-Diffusion Processes.β Journal of the American Statistical Association 0 (0): 1β18.
Lobacheva, Ekaterina, Nadezhda Chirkova, and Dmitry Vetrov. 2017.
βBayesian Sparsification of Recurrent Neural Networks.β In
Workshop on Learning to Generate Natural Language.
Long, Quan, Marco Scavino, RaΓΊl Tempone, and Suojin Wang. 2013.
βFast Estimation of Expected Information Gains for Bayesian Experimental Designs Based on Laplace Approximations.β Computer Methods in Applied Mechanics and Engineering 259 (June): 24β39.
Louizos, Christos, Uri Shalit, Joris M Mooij, David Sontag, Richard Zemel, and Max Welling. 2017.
βCausal Effect Inference with Deep Latent-Variable Models.β In
Advances in Neural Information Processing Systems 30, edited by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, 6446β56. Curran Associates, Inc.
Louizos, Christos, and Max Welling. 2016.
βStructured and Efficient Variational Deep Learning with Matrix Gaussian Posteriors.β In
arXiv Preprint arXiv:1603.04733, 1708β16.
MacKay, David J C. 2002. Information Theory, Inference & Learning Algorithms. Cambridge University Press.
Mackay, David J. C. 1992.
βA Practical Bayesian Framework for Backpropagation Networks.β Neural Computation 4 (3): 448β72.
Maddison, Chris J., Dieterich Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi, Andriy Mnih, Arnaud Doucet, and Yee Whye Teh. 2017.
βFiltering Variational Objectives.β arXiv Preprint arXiv:1705.09279.
Maddox, Wesley, Timur Garipov, Pavel Izmailov, Dmitry Vetrov, and Andrew Gordon Wilson. 2019.
βA Simple Baseline for Bayesian Uncertainty in Deep Learning,β February.
Mandt, Stephan, Matthew D. Hoffman, and David M. Blei. 2017.
βStochastic Gradient Descent as Approximate Bayesian Inference.β JMLR, April.
Martens, James, and Roger Grosse. 2015.
βOptimizing Neural Networks with Kronecker-Factored Approximate Curvature.β In
Proceedings of the 32nd International Conference on Machine Learning, 2408β17. PMLR.
Matthews, Alexander Graeme de Garis, Mark Rowland, Jiri Hron, Richard E. Turner, and Zoubin Ghahramani. 2018.
βGaussian Process Behaviour in Wide Deep Neural Networks.β In
arXiv:1804.11271 [Cs, Stat].
Matthews, Alexander Graeme de Garis, Mark van der Wilk, Tom Nickson, Keisuke Fujii, Alexis Boukouvalas, Pablo LeΓ³n-VillagrΓ‘, Zoubin Ghahramani, and James Hensman. 2016.
βGPflow: A Gaussian Process Library Using TensorFlow.β arXiv:1610.08733 [Stat], October.
Molchanov, Dmitry, Arsenii Ashukha, and Dmitry Vetrov. 2017.
βVariational Dropout Sparsifies Deep Neural Networks.β In
Proceedings of ICML.
Neal, Radford M. 1996.
βBayesian Learning for Neural Networks.β Secaucus, NJ, USA: Springer-Verlag New York, Inc.
Ngiam, Jiquan, Zhenghao Chen, Pang W. Koh, and Andrew Y. Ng. 2011.
βLearning Deep Energy Models.β In
Proceedings of the 28th International Conference on Machine Learning (ICML-11), 1105β12.
Oakley, Jeremy E., and Benjamin D. Youngman. 2017.
βCalibration of Stochastic Computer Simulators Using Likelihood Emulation.β Technometrics 59 (1): 80β92.
Ober, Sebastian W., and Carl E. Rasmussen. 2019.
βBenchmarking the Neural Linear Model for Regression.β In. arXiv.
Opitz, Thomas, RaphaΓ«l Huser, Haakon Bakka, and HΓ₯vard Rue. 2018.
βINLA Goes Extreme: Bayesian Tail Regression for the Estimation of High Spatio-Temporal Quantiles.β Extremes 21 (3): 441β62.
Ovadia, Yaniv, Emily Fertig, Jie Ren, Zachary Nado, D. Sculley, Sebastian Nowozin, Joshua V. Dillon, Balaji Lakshminarayanan, and Jasper Snoek. 2019.
βCan You Trust Your Modelβs Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift.β In
Proceedings of the 33rd International Conference on Neural Information Processing Systems, 14003β14. Red Hook, NY, USA: Curran Associates Inc.
Pan, Yu, Kwo-Sen Kuo, Michael L. Rilee, and Hongfeng Yu. 2021.
βAssessing Deep Neural Networks as Probability Estimators.β arXiv:2111.08239 [Cs, Stat], November.
Papadopoulos, G., P.J. Edwards, and A.F. Murray. 2001.
βConfidence Estimation Methods for Neural Networks: A Practical Comparison.β IEEE Transactions on Neural Networks 12 (6): 1278β87.
Papamakarios, George, Iain Murray, and Theo Pavlakou. 2017.
βMasked Autoregressive Flow for Density Estimation.β In
Advances in Neural Information Processing Systems 30, edited by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, 2338β47. Curran Associates, Inc.
Partee, Sam, Michael Ringenburg, Benjamin Robbins, and Andrew Shao. 2019. βModel Parameter Optimization: ML-Guided Trans-Resolution Tuning of Physical Models.β In. Zenodo.
Peluchetti, Stefano, and Stefano Favaro. 2020.
βInfinitely Deep Neural Networks as Diffusion Processes.β In
International Conference on Artificial Intelligence and Statistics, 1126β36. PMLR.
Petersen, Kaare Brandt, and Michael Syskind Pedersen. 2012.
βThe Matrix Cookbook.βPiterbarg, V. I., and V. R. Fatalov. 1995.
βThe Laplace Method for Probability Measures in Banach Spaces.β Russian Mathematical Surveys 50 (6): 1151.
Psaros, Apostolos F., Xuhui Meng, Zongren Zou, Ling Guo, and George Em Karniadakis. 2023.
βUncertainty Quantification in Scientific Machine Learning: Methods, Metrics, and Comparisons.β Journal of Computational Physics 477 (March): 111902.
Rasmussen, Carl Edward, and Christopher K. I. Williams. 2006.
Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. Cambridge, Mass: MIT Press.
Rezende, Danilo Jimenez, and Shakir Mohamed. 2015.
βVariational Inference with Normalizing Flows.β In
International Conference on Machine Learning, 1530β38. ICMLβ15. Lille, France: JMLR.org.
Rezende, Danilo J, SΓ©bastien RacaniΓ¨re, Irina Higgins, and Peter Toth. 2019. βEquivariant Hamiltonian Flows.β In Machine Learning and the Physical Sciences Workshop at the 33rd Conference on Neural Information Processing Systems (NeurIPS), 6.
Ritter, Hippolyt, Aleksandar Botev, and David Barber. 2018.
βA Scalable Laplace Approximation for Neural Networks.β In.
Ritter, Hippolyt, and Theofanis Karaletsos. 2022.
βTyXe: Pyro-Based Bayesian Neural Nets for Pytorch.β Proceedings of Machine Learning and Systems 4 (April): 398β413.
Ritter, Hippolyt, Martin Kukla, Cheng Zhang, and Yingzhen Li. 2021.
βSparse Uncertainty Representation in Deep Learning with Inducing Weights.β arXiv:2105.14594 [Cs, Stat], May.
Rue, HΓ₯vard, Andrea Riebler, Sigrunn H. SΓΈrbye, Janine B. Illian, Daniel P. Simpson, and Finn K. Lindgren. 2016.
βBayesian Computing with INLA: A Review.β arXiv:1604.00860 [Stat], September.
Ruiz, Francisco J. R., Michalis K. Titsias, and David M. Blei. 2016.
βThe Generalized Reparameterization Gradient.β In
Advances In Neural Information Processing Systems.
Ryder, Thomas, Andrew Golightly, A. Stephen McGough, and Dennis Prangle. 2018.
βBlack-Box Variational Inference for Stochastic Differential Equations.β arXiv:1802.03335 [Stat], February.
Sanchez-Gonzalez, Alvaro, Victor Bapst, Peter Battaglia, and Kyle Cranmer. 2019. βHamiltonian Graph Networks with ODE Integrators.β In Machine Learning and the Physical Sciences Workshop at the 33rd Conference on Neural Information Processing Systems (NeurIPS), 11.
Saumard, Adrien, and Jon A. Wellner. 2014.
βLog-Concavity and Strong Log-Concavity: A Review.β arXiv:1404.5886 [Math, Stat], April.
Sigrist, Fabio, Hans R. KΓΌnsch, and Werner A. Stahel. 2015.
βStochastic Partial Differential Equation Based Modelling of Large Space-Time Data Sets.β Journal of the Royal Statistical Society: Series B (Statistical Methodology) 77 (1): 3β33.
Simchoni, Giora, and Saharon Rosset. 2023.
βIntegrating Random Effects in Deep Neural Networks.β arXiv.
Snoek, Jasper, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram, Md Mostofa Ali Patwary, Prabhat, and Ryan P. Adams. 2015.
βScalable Bayesian Optimization Using Deep Neural Networks.β In
Proceedings of the 32nd International Conference on Machine Learning.
Solin, Arno, and Simo SΓ€rkkΓ€. 2020.
βHilbert Space Methods for Reduced-Rank Gaussian Process Regression.β Statistics and Computing 30 (2): 419β46.
Sun, Shengyang, Guodong Zhang, Jiaxin Shi, and Roger Grosse. 2019.
βFunctional Variational Bayesian Neural Networks.β In.
Tang, Yanbo, and Nancy Reid. 2021.
βLaplace and Saddlepoint Approximations in High Dimensions.β arXiv:2107.10885 [Math, Stat], July.
Thakur, Sujay, Cooper Lorsung, Yaniv Yacoby, Finale Doshi-Velez, and Weiwei Pan. 2021.
βUncertainty-Aware (UNA) Bases for Deep Bayesian Regression Using Multi-Headed Auxiliary Networks.β arXiv:2006.11695 [Cs, Stat], December.
Tran, Ba-Hien, Simone Rossi, Dimitrios Milios, and Maurizio Filippone. 2022.
βAll You Need Is a Good Functional Prior for Bayesian Deep Learning.β Journal of Machine Learning Research 23 (74): 1β56.
Tran, Ba-Hien, Simone Rossi, Dimitrios Milios, Pietro Michiardi, Edwin V Bonilla, and Maurizio Filippone. 2021.
βModel Selection for Bayesian Autoencoders.β In
Advances in Neural Information Processing Systems, 34:19730β42. Curran Associates, Inc.
Tran, Dustin, Mike Dusenberry, Mark van der Wilk, and Danijar Hafner. 2019. βBayesian Layers: A Module for Neural Network Uncertainty.β Advances in Neural Information Processing Systems 32.
Tran, Dustin, Matthew D. Hoffman, Rif A. Saurous, Eugene Brevdo, Kevin Murphy, and David M. Blei. 2017.
βDeep Probabilistic Programming.β In
ICLR.
Tran, Dustin, Alp Kucukelbir, Adji B. Dieng, Maja Rudolph, Dawen Liang, and David M. Blei. 2016.
βEdward: A Library for Probabilistic Modeling, Inference, and Criticism.β arXiv:1610.09787 [Cs, Stat], October.
Wacker, Philipp. 2017.
βLaplaceβs Method in Bayesian Inverse Problems.β arXiv:1701.07989 [Math], April.
Wainwright, Martin, and Michael I Jordan. 2005. βA Variational Principle for Graphical Models.β In New Directions in Statistical Signal Processing. Vol. 155. MIT Press.
Watson, Joe, Jihao Andreas Lin, Pascal Klink, and Jan Peters. 2020. βNeural Linear Models with Functional Gaussian Process Priors.β In, 10.
Weber, Noah, Janez Starc, Arpit Mittal, Roi Blanco, and LluΓs MΓ rquez. 2018.
βOptimizing over a Bayesian Last Layer.β In
NeurIPS Workshop on Bayesian Deep Learning.
Wenzel, Florian, Kevin Roth, Bastiaan Veeling, Jakub Swiatkowski, Linh Tran, Stephan Mandt, Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. 2020.
βHow Good Is the Bayes Posterior in Deep Neural Networks Really?β In
Proceedings of the 37th International Conference on Machine Learning, 119:10248β59. PMLR.
Yang, Yunfei, Zhen Li, and Yang Wang. 2021.
βOn the Capacity of Deep Generative Networks for Approximating Distributions.β arXiv:2101.12353 [Cs, Math, Stat], January.
Zeevi, Assaf J., and Ronny Meir. 1997.
βDensity Estimation Through Convex Combinations of Densities: Approximation and Estimation Bounds.β Neural Networks: The Official Journal of the International Neural Network Society 10 (1): 99β109.
Zellner, Arnold. 1988.
βOptimal Information Processing and Bayesβs Theorem.β The American Statistician 42 (4): 278β80.
No comments yet. Why not leave one?