Arridge, Simon, Peter Maass, Ozan Γktem, and Carola-Bibiane SchΓΆnlieb. 2019.
βSolving Inverse Problems Using Data-Driven Models.β Acta Numerica 28 (May): 1β174.
Ayed, Ibrahim, and Emmanuel de BΓ©zenac. 2019. βLearning Dynamical Systems from Partial Observations.β In Advances In Neural Information Processing Systems, 12.
Dupont, Emilien, Hyunjik Kim, S. M. Ali Eslami, Danilo Jimenez Rezende, and Dan Rosenbaum. 2022.
βFrom Data to Functa: Your Data Point Is a Function and You Can Treat It Like One.β In
Proceedings of the 39th International Conference on Machine Learning, 5694β5725. PMLR.
E, Weinan, and Bing Yu. 2018.
βThe Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems.β Communications in Mathematics and Statistics 6 (1): 1β12.
Han, Jiequn, Arnulf Jentzen, and Weinan E. 2018.
βSolving High-Dimensional Partial Differential Equations Using Deep Learning.β Proceedings of the National Academy of Sciences 115 (34): 8505β10.
Ikeda, M. 1989.
βDecentralized Control of Large Scale Systems.β In
Three Decades of Mathematical System Theory: A Collection of Surveys at the Occasion of the 50th Birthday of Jan C. Willems, edited by Hendrik Nijmeijer and Johannes M. Schumacher, 219β42. Lecture Notes in Control and Information Sciences. Berlin, Heidelberg: Springer.
Lu, Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. 2021.
βDeepXDE: A Deep Learning Library for Solving Differential Equations.β SIAM Review 63 (1): 208β28.
MΓΌller, Johannes, and Marius Zeinhofer. 2020.
βDeep Ritz Revisited.β arXiv.
Nabian, Mohammad Amin, and Hadi Meidani. 2019.
βA Deep Learning Solution Approach for High-Dimensional Random Differential Equations.β Probabilistic Engineering Mechanics 57 (July): 14β25.
Park, Ji Hwan, Shinjae Yoo, and Balu Nadiga. 2019. βMachine Learning Climate Variability.β In, 5.
Patraucean, Viorica, Ankur Handa, and Roberto Cipolla. 2015.
βSpatio-Temporal Video Autoencoder with Differentiable Memory.β arXiv:1511.06309 [Cs], November.
Rackauckas, Chris, Alan Edelman, Keno Fischer, Mike Innes, Elliot Saba, Viral B Shah, and Will Tebbutt. 2020.
βGeneralized Physics-Informed Learning Through Language-Wide Differentiable Programming.β MIT Web Domain, 6.
Raissi, Maziar, Alireza Yazdani, and George Em Karniadakis. 2020.
βHidden Fluid Mechanics: Learning Velocity and Pressure Fields from Flow Visualizations.β Science 367 (6481): 1026β30.
Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. 2015.
βU-Net: Convolutional Networks for Biomedical Image Segmentation.β Edited by Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi.
Medical Image Computing and Computer-Assisted Intervention β MICCAI 2015. Lecture Notes in Computer Science. Cham: Springer International Publishing.
Ruthotto, Lars, and Eldad Haber. 2020.
βDeep Neural Networks Motivated by Partial Differential Equations.β Journal of Mathematical Imaging and Vision 62 (3): 352β64.
SΓ€rkkΓ€, Simo. 2011.
βLinear Operators and Stochastic Partial Differential Equations in Gaussian Process Regression.β In
Artificial Neural Networks and Machine Learning β ICANN 2011, edited by Timo Honkela, WΕodzisΕaw Duch, Mark Girolami, and Samuel Kaski, 6792:151β58. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer.
SΓ€rkkΓ€, Simo, and Jouni Hartikainen. 2012.
βInfinite-Dimensional Kalman Filtering Approach to Spatio-Temporal Gaussian Process Regression.β In
Artificial Intelligence and Statistics.
Shankar, Varun, Gavin D Portwood, Arvind T Mohan, Peetak P Mitra, Christopher Rackauckas, Lucas A Wilson, David P Schmidt, and Venkatasubramanian Viswanathan. 2020. βLearning Non-Linear Spatio-Temporal Dynamics with Convolutional Neural ODEs.β In Third Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020).
Shelhamer, Evan, Jonathan Long, and Trevor Darrell. 2017.
βFully Convolutional Networks for Semantic Segmentation.β IEEE Transactions on Pattern Analysis and Machine Intelligence 39 (4): 640β51.
Tait, Daniel J., and Theodoros Damoulas. 2020.
βVariational Autoencoding of PDE Inverse Problems.β arXiv:2006.15641 [Cs, Stat], June.
Tartakovsky, Alexandre M., Carlos Ortiz Marrero, Paris Perdikaris, Guzel D. Tartakovsky, and David Barajas-Solano. 2018.
βLearning Parameters and Constitutive Relationships with Physics Informed Deep Neural Networks,β August.
Zammit-Mangion, Andrew, Tin Lok James Ng, Quan Vu, and Maurizio Filippone. 2021.
βDeep Compositional Spatial Models.β Journal of the American Statistical Association 0 (0): 1β22.
Zammit-Mangion, Andrew, and Christopher K. Wikle. 2020.
βDeep Integro-Difference Equation Models for Spatio-Temporal Forecasting.β Spatial Statistics 37 (June): 100408.
Zang, Yaohua, Gang Bao, Xiaojing Ye, and Haomin Zhou. 2020.
βWeak Adversarial Networks for High-Dimensional Partial Differential Equations.β Journal of Computational Physics 411 (June): 109409.
Zhang, Dongkun, Ling Guo, and George Em Karniadakis. 2020.
βLearning in Modal Space: Solving Time-Dependent Stochastic PDEs Using Physics-Informed Neural Networks.β SIAM Journal on Scientific Computing 42 (2): A639β65.
Zhang, Dongkun, Lu Lu, Ling Guo, and George Em Karniadakis. 2019.
βQuantifying Total Uncertainty in Physics-Informed Neural Networks for Solving Forward and Inverse Stochastic Problems.β Journal of Computational Physics 397 (November): 108850.
No comments yet. Why not leave one?